Difference between revisions of "2002 AMC 10P Problems/Problem 14"
(→Solution 1) |
(→Solution 1) |
||
Line 16: | Line 16: | ||
== Solution 1== | == Solution 1== | ||
− | Draw a diagram. Split quadrilateral <math>EIDJ</math> into <math>\triangle EIJ</math> and <math>\triangle JDI.</math> Let the perpendicular from point <math>E</math> intersect <math>AD</math> at <math>X</math>, and let the perpendicular from point <math>E</math> intersect <math>CD</math> at <math>Y.</math> We know <math>\angle EJD=120^{\circ}</math> because <math>\angle JDC=90^{\circ}</math> since <math>ABCD</math> is a square, <math>\angle DCE=60^{\circ}</math> as given, and <math>\angle CEJ = 90^{\circ},</math> so \angle EJD = 360^{\circ}-120^{\circ}-90^\{circ}-90^\{circ}-60^\{circ}=120\{circ}.<math> Since < | + | Draw a diagram. Split quadrilateral <math>EIDJ</math> into <math>\triangle EIJ</math> and <math>\triangle JDI.</math> Let the perpendicular from point <math>E</math> intersect <math>AD</math> at <math>X</math>, and let the perpendicular from point <math>E</math> intersect <math>CD</math> at <math>Y.</math> We know <math>\angle EJD=120^{\circ}</math> because <math>\angle JDC=90^{\circ}</math> since <math>ABCD</math> is a square, <math>\angle DCE=60^{\circ}</math> as given, and <math>\angle CEJ = 90^{\circ},</math> so <math>\angle EJD = 360^{\circ}-120^{\circ}-90^\{circ}-90^\{circ}-60^\{circ}=120\{circ}.</math> Since <math>E</math> is at the center of square <math>ABCD</math>, <math>EX=EY=\frac{1}{2}.</math> By the <math>30^{\circ}-60^{\circ}-90^{\circ},</math> <math>ED=\frac{EX}{\sqrt{3}}=EC=\frac{EY}{\sqrt{3}}=\frac{1}{3}.</math> Additionally, we know <math>JD=AD-AX-XJ,</math> so <math>JD=1-\frac{1}{2}-\frac{1}{2 \sqrt{3}}</math> and we know <math>ID=DY+IY,</math> so <math>ID=\frac{1}{2}+\frac{1}{2 \sqrt{3}}.</math> From here, we can sum the areas of <math>\triangle EIJ</math> and <math>\triangle JDI.</math> to get the area of quadrilateral <math>EIDJ.</math> Therefore, |
\begin{align*} | \begin{align*} | ||
− | [EIDJ]&=[EIJ]+[JDI] | + | [EIDJ]&=[EIJ]+[JDI] \ |
− | &=\frac{1}{2}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}} + \frac{1}{2} (1-\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) | + | &=\frac{1}{2}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}} + \frac{1}{2} (1-\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) \ |
− | &=\frac{1}{2}\frac{1}{3}+\frac{\frac{1}{4}-\frac{1}{12}}{2} | + | &=\frac{1}{2}\frac{1}{3}+\frac{\frac{1}{4}-\frac{1}{12}}{2} \ |
− | &=\frac{1}{6}+\frac{1}{12} | + | &=\frac{1}{6}+\frac{1}{12} \ |
− | &=\frac{1}{4} | + | &=\frac{1}{4} \ |
\end{align*} | \end{align*} | ||
+ | |||
+ | Thus, our answer is \boxed{\textbf{(A) } \frac{1}{4}}. | ||
== See also == | == See also == | ||
{{AMC10 box|year=2002|ab=P|num-b=13|num-a=15}} | {{AMC10 box|year=2002|ab=P|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 07:50, 15 July 2024
Problem 14
The vertex of a square is at the center of square The length of a side of is and the length of a side of is Side intersects at and intersects at If angle the area of quadrilateral is
Solution 1
Draw a diagram. Split quadrilateral into and Let the perpendicular from point intersect at , and let the perpendicular from point intersect at We know because since is a square, as given, and so $\angle EJD = 360^{\circ}-120^{\circ}-90^\{circ}-90^\{circ}-60^\{circ}=120\{circ}.$ (Error compiling LaTeX. Unknown error_msg) Since is at the center of square , By the Additionally, we know so and we know so From here, we can sum the areas of and to get the area of quadrilateral Therefore,
Thus, our answer is \boxed{\textbf{(A) } \frac{1}{4}}.
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.