Difference between revisions of "2002 AMC 10P Problems/Problem 5"
(→Solution 2) |
(→Solution 1) |
||
(One intermediate revision by the same user not shown) | |||
Line 15: | Line 15: | ||
== Solution 1 == | == Solution 1 == | ||
− | The recursive rule is equal to <math>a_{n+1}=\frac{1}{3}+a_{n}</math> for all <math>n \geq 1.</math> By recursion, <math>a_{n+2}=\frac{1}{3}+a_{n+1}= | + | The recursive rule is equal to <math>a_{n+1}=\frac{1}{3}+a_{n}</math> for all <math>n \geq 1.</math> By recursion, <math>a_{n+2}=\frac{1}{3}+a_{n+1}=\frac{1}{3}+\frac{1}{3}+a_n=\frac{1}{3}(2)+a_n.</math> If we set <math>n=1</math> and repeat this process <math>2001</math> times, we will get <math>a_{2001+1}=a_{2002}=\frac{1}{3}(2001) + a_1=667+1=668.</math> |
Thus, our answer is <math>\boxed{\textbf{(C) } 668}.</math> | Thus, our answer is <math>\boxed{\textbf{(C) } 668}.</math> |
Latest revision as of 16:12, 15 July 2024
Contents
[hide]Problem
Let be a sequence such that and for all Find
Solution 1
The recursive rule is equal to for all By recursion, If we set and repeat this process times, we will get
Thus, our answer is
Solution 2
Find the first few terms of the sequence and find a pattern.
From here, we can deduce that Plugging in
Thus, our answer is
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.