Difference between revisions of "2002 AMC 10P Problems/Problem 1"

(Solution 1)
 
(3 intermediate revisions by one other user not shown)
Line 17: Line 17:
 
We can use basic rules of exponentiation to solve this problem.
 
We can use basic rules of exponentiation to solve this problem.
  
\begin{align*}
+
<math>\frac{(2^4)^8}{(4^8)^2}  
\frac{(2^4)^8}{(4^8)^2}<math>\
+
=\frac{(2^4)^8}{(2^{16})^2}  
=\frac{(2^4)^8}{(2^16)^2}</math>\
+
=\frac{2^{32}}{2^{32}}
=\frac{2^32}{2^32}<math>\
+
=1</math>
=1
 
\end{align*}
 
  
Thus, our answer is </math>\boxed{\textbf{(C) } 1}.$
+
Thus, our answer is <math>\boxed{\textbf{(C) } 1}.</math>
 +
== Solution 2==
 +
We can rearrange the exponents on the bottom to solve this problem:
  
 +
<math>\frac{(2^4)^8}{(4^8)^2}
 +
=\frac{(2^4)^8}{(4^{2})^8}
 +
=\frac{16^{8}}{16^{8}}
 +
=\boxed{\textbf{(C) } 1}</math>
 
== See also ==
 
== See also ==
 
{{AMC10 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{AMC10 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:55, 13 August 2024

Problem

The ratio $\frac{(2^4)^8}{(4^8)^2}$ equals

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{1}{2} \qquad \text{(C) }1 \qquad \text{(D) }2 \qquad \text{(E) }8$

Solution 1

We can use basic rules of exponentiation to solve this problem.

$\frac{(2^4)^8}{(4^8)^2}  =\frac{(2^4)^8}{(2^{16})^2}  =\frac{2^{32}}{2^{32}}  =1$

Thus, our answer is $\boxed{\textbf{(C) } 1}.$

Solution 2

We can rearrange the exponents on the bottom to solve this problem:

$\frac{(2^4)^8}{(4^8)^2}  =\frac{(2^4)^8}{(4^{2})^8}  =\frac{16^{8}}{16^{8}}  =\boxed{\textbf{(C) } 1}$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png