GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2022 AMC 12A Problems"

(Problem 15)
(Problem 5)
 
(53 intermediate revisions by 14 users not shown)
Line 15: Line 15:
  
 
==Problem 3==
 
==Problem 3==
These problems will be posted once the 2022 AMC 12A is released.
+
 
 +
Five rectangles, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math>, are arranged in a square as shown below. These rectangles have dimensions <math>1\times6</math>, <math>2\times4</math>, <math>5\times6</math>, <math>2\times7</math>, and <math>2\times3</math>, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?
 +
<asy>
 +
size(150);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
 +
</asy>
 +
<math>\textbf{(A) }A\qquad\textbf{(B) }B \qquad\textbf{(C) }C \qquad\textbf{(D) }D\qquad\textbf{(E) }E</math>
  
 
[[2022 AMC 12A Problems/Problem 3|Solution]]
 
[[2022 AMC 12A Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
The least common multiple of a positive divisor <math>n</math> and <math>18</math> is <math>180</math>, and the greatest common divisor of <math>n</math> and <math>45</math> is <math>15</math>. What is the sum of the digits of <math>n</math>?
+
The least common multiple of a positive integer <math>n</math> and <math>18</math> is <math>180</math>, and the greatest common divisor of <math>n</math> and <math>45</math> is <math>15</math>. What is the sum of the digits of <math>n</math>?
  
 
<math>\textbf{(A) } 3 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12</math>
 
<math>\textbf{(A) } 3 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12</math>
Line 28: Line 40:
 
==Problem 5==
 
==Problem 5==
  
The <math>\textit{taxicab distance}</math> between points <math>(x_1, y_1)</math> and <math>(x_2, y_2)</math> in the coordinate plane is given by <math>|x_1 - x_2| + |y_1 - y_2|</math>. For how many points <math>P</math> with integer coordinates is the taxicab distance between <math>P</math> and the origin less than or equal to <math>20</math>?
+
The <em>taxicab distance</em> between points <math>(x_1, y_1)</math> and <math>(x_2, y_2)</math> in the coordinate plane is given by <cmath>|x_1 - x_2| + |y_1 - y_2|.</cmath>
 +
For how many points <math>P</math> with integer coordinates is the taxicab distance between <math>P</math> and the origin less than or equal to <math>20</math>?
  
 
<math>\textbf{(A)} \, 441 \qquad\textbf{(B)} \, 761 \qquad\textbf{(C)} \, 841 \qquad\textbf{(D)} \, 921  \qquad\textbf{(E)} \, 924 </math>
 
<math>\textbf{(A)} \, 441 \qquad\textbf{(B)} \, 761 \qquad\textbf{(C)} \, 841 \qquad\textbf{(D)} \, 921  \qquad\textbf{(E)} \, 924 </math>
Line 35: Line 48:
  
 
==Problem 6==
 
==Problem 6==
A data set consists of <math>6</math> not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The
+
A data set consists of <math>6</math> (not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The
 
average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is
 
average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is
the sum of all positive values of <math>X</math>?
+
the sum of all possible values of <math>X</math>?
  
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>
Line 55: Line 68:
  
 
The infinite product
 
The infinite product
<cmath>\sqrt[3]{10} \cdot \sqrt[3]{\sqrt[3]{10}} \cdot \sqrt[3]{\sqrt[3]{\sqrt[3]{10}}} \ldots</cmath>
+
<cmath>\sqrt[3]{10} \cdot \sqrt[3]{\sqrt[3]{10}} \cdot \sqrt[3]{\sqrt[3]{\sqrt[3]{10}}} \cdots</cmath>
 
evaluates to a real number. What is that number?
 
evaluates to a real number. What is that number?
  
Line 98: Line 111:
  
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 25 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 81</math>
 
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 25 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 81</math>
 
  
 
[[2022 AMC 12A Problems/Problem 11|Solution]]
 
[[2022 AMC 12A Problems/Problem 11|Solution]]
  
 
==Problem 12==
 
==Problem 12==
Let <math>M</math> be the midpoint of <math>AB</math> in regular tetrahedron <math>ABCD</math>. What is <math>\cos(\angle CMD)</math>?
+
Let <math>M</math> be the midpoint of <math>\overline{AB}</math> in regular tetrahedron <math>ABCD</math>. What is <math>\cos(\angle CMD)</math>?
  
 
<math>\textbf{(A) } \frac14 \qquad \textbf{(B) } \frac13 \qquad \textbf{(C) } \frac25 \qquad \textbf{(D) } \frac12 \qquad \textbf{(E) } \frac{\sqrt{3}}{2}</math>
 
<math>\textbf{(A) } \frac14 \qquad \textbf{(B) } \frac13 \qquad \textbf{(C) } \frac25 \qquad \textbf{(D) } \frac12 \qquad \textbf{(E) } \frac{\sqrt{3}}{2}</math>
Line 113: Line 125:
  
 
<math>\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17</math>
 
<math>\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17</math>
 
  
 
[[2022 AMC 12A Problems/Problem 13|Solution]]
 
[[2022 AMC 12A Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
What is the value of
+
What is the value of <cmath>(\log 5)^3+(\log 20)^3+(\log 8)(\log 0.25)</cmath> where <math>\log</math> denotes the base-ten logarithm?
<cmath>(\log 5)^3+(\log 20)^3+(\log 8)(\log 0.25)</cmath>
 
Where all logarithms have base <math>10</math>?
 
 
 
<math>\textbf{(A) } \frac{3}{2} \qquad \textbf{(B) } \frac{7}{4} \qquad \textbf{(C) } 2 \qquad \textbf{(D) } \frac{9}{4} \qquad \textbf{(E) } \frac{5}{2}</math>
 
  
 +
<math>\textbf{(A) } \frac{3}{2} \qquad \textbf{(B) } \frac{7}{4} \qquad \textbf{(C) } 2 \qquad \textbf{(D) } \frac{9}{4} \qquad \textbf{(E) } 3</math>
  
 
[[2022 AMC 12A Problems/Problem 14|Solution]]
 
[[2022 AMC 12A Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
The roots of the polynomial
+
The roots of the polynomial <math>10x^3-39x^2+29x-6</math> are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by <math>2</math> units. What is the volume of the new box?
<cmath>10x^3-39x^2+29x-6</cmath>
 
are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by <math>2</math> units. What is the volume of the new box?
 
  
 
<math>\textbf{(A) } \frac{24}{5} \qquad \textbf{(B) } \frac{42}{5} \qquad \textbf{(C) } \frac{81}{5} \qquad \textbf{(D) } 30 \qquad \textbf{(E) } 48</math>
 
<math>\textbf{(A) } \frac{24}{5} \qquad \textbf{(B) } \frac{42}{5} \qquad \textbf{(C) } \frac{81}{5} \qquad \textbf{(D) } 30 \qquad \textbf{(E) } 48</math>
 
  
 
[[2022 AMC 12A Problems/Problem 15|Solution]]
 
[[2022 AMC 12A Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
These problems will be posted once the 2022 AMC 12A is released.
+
A triangular number is a positive integer that can be expressed in the form <math>t_n=1+2+3+\cdots+n</math>, for some positive integer <math>n</math>. The three smallest triangular numbers that are also perfect squares are <math>t_1=1=1^2, t_8=36=6^2,</math> and <math>t_{49}=1225=35^2</math>. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?
 +
 
 +
<math>\textbf{(A)} ~6 \qquad\textbf{(B)} ~9 \qquad\textbf{(C)} ~12 \qquad\textbf{(D)} ~18 \qquad\textbf{(E)} ~27 </math>
  
 
[[2022 AMC 12A Problems/Problem 16|Solution]]
 
[[2022 AMC 12A Problems/Problem 16|Solution]]
  
 
==Problem 17==
 
==Problem 17==
These problems will be posted once the 2022 AMC 12A is released.
+
 
 +
Suppose <math>a</math> is a real number such that the equation <cmath>a\cdot(\sin{x}+\sin{(2x)}) = \sin{(3x)}</cmath>
 +
has more than one solution in the interval <math>(0, \pi)</math>. The set of all such <math>a</math> that can be written
 +
in the form <cmath>(p,q) \cup (q,r),</cmath>
 +
where <math>p, q,</math> and <math>r</math> are real numbers with <math>p < q< r</math>. What is <math>p+q+r</math>?
 +
 
 +
<math>\textbf{(A) } {-}4 \qquad \textbf{(B) } {-}1 \qquad \textbf{(C) } 0 \qquad \textbf{(D) } 1 \qquad \textbf{(E) } 4</math>
  
 
[[2022 AMC 12A Problems/Problem 17|Solution]]
 
[[2022 AMC 12A Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
These problems will be posted once the 2022 AMC 12A is released.
+
Let <math>T_k</math> be the transformation of the coordinate plane that first rotates the plane <math>k</math> degrees counterclockwise around the origin and then reflects the plane across the <math>y</math>-axis. What is the least positive integer <math>n</math> such that performing the sequence of transformations <math>T_1, T_2, T_3, \dots, T_n</math> returns the point <math>(1,0)</math> back to itself?
 +
 
 +
<math>\textbf{(A) } 359 \qquad \textbf{(B) } 360\qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721</math>
  
 
[[2022 AMC 12A Problems/Problem 18|Solution]]
 
[[2022 AMC 12A Problems/Problem 18|Solution]]
  
 
==Problem 19==
 
==Problem 19==
These problems will be posted once the 2022 AMC 12A is released.
+
Suppose that <math>13</math> cards numbered <math>1, 2, 3, \ldots, 13</math> are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards <math>1, 2, 3</math> are picked up on the first pass, <math>4</math> and <math>5</math> on the second pass, <math>6</math> on the third pass, <math>7, 8, 9, 10</math> on the fourth pass, and <math>11, 12, 13</math> on the fifth pass. For how many of the <math>13!</math> possible orderings of the cards will the <math>13</math> cards be picked up in exactly two passes?
 +
 
 +
<asy>
 +
size(11cm);
 +
draw((0,0)--(2,0)--(2,3)--(0,3)--cycle);
 +
label("7", (1,1.5));
 +
draw((3,0)--(5,0)--(5,3)--(3,3)--cycle);
 +
label("11", (4,1.5));
 +
draw((6,0)--(8,0)--(8,3)--(6,3)--cycle);
 +
label("8", (7,1.5));
 +
draw((9,0)--(11,0)--(11,3)--(9,3)--cycle);
 +
label("6", (10,1.5));
 +
draw((12,0)--(14,0)--(14,3)--(12,3)--cycle);
 +
label("4", (13,1.5));
 +
draw((15,0)--(17,0)--(17,3)--(15,3)--cycle);
 +
label("5", (16,1.5));
 +
draw((18,0)--(20,0)--(20,3)--(18,3)--cycle);
 +
label("9", (19,1.5));
 +
draw((21,0)--(23,0)--(23,3)--(21,3)--cycle);
 +
label("12", (22,1.5));
 +
draw((24,0)--(26,0)--(26,3)--(24,3)--cycle);
 +
label("1", (25,1.5));
 +
draw((27,0)--(29,0)--(29,3)--(27,3)--cycle);
 +
label("13", (28,1.5));
 +
draw((30,0)--(32,0)--(32,3)--(30,3)--cycle);
 +
label("10", (31,1.5));
 +
draw((33,0)--(35,0)--(35,3)--(33,3)--cycle);
 +
label("2", (34,1.5));
 +
draw((36,0)--(38,0)--(38,3)--(36,3)--cycle);
 +
label("3", (37,1.5));
 +
</asy>
 +
<math>\textbf{(A) } 4082 \qquad \textbf{(B) } 4095 \qquad \textbf{(C) } 4096 \qquad \textbf{(D) } 8178 \qquad \textbf{(E) } 8191</math>
  
 
[[2022 AMC 12A Problems/Problem 19|Solution]]
 
[[2022 AMC 12A Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
These problems will be posted once the 2022 AMC 12A is released.
+
 
 +
Isosceles trapezoid <math>ABCD</math> has parallel sides <math>\overline{AD}</math> and <math>\overline{BC},</math> with <math>BC < AD</math> and <math>AB = CD.</math> There is a point <math>P</math> in the plane such that <math>PA=1, PB=2, PC=3,</math> and <math>PD=4.</math> What is <math>\tfrac{BC}{AD}?</math>
 +
 
 +
<math>\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}</math>
  
 
[[2022 AMC 12A Problems/Problem 20|Solution]]
 
[[2022 AMC 12A Problems/Problem 20|Solution]]
  
 
==Problem 21==
 
==Problem 21==
These problems will be posted once the 2022 AMC 12A is released.
+
 
 +
Let <cmath>P(x) = x^{2022} + x^{1011} + 1.</cmath> Which of the following polynomials is a factor of <math>P(x)</math>?
 +
 
 +
<math>\textbf{(A)} \, x^2 -x + 1 \qquad\textbf{(B)} \, x^2 + x + 1 \qquad\textbf{(C)} \, x^4 + 1 \qquad\textbf{(D)} \, x^6 - x^3 + 1  \qquad\textbf{(E)} \, x^6 + x^3 + 1 </math>
  
 
[[2022 AMC 12A Problems/Problem 21|Solution]]
 
[[2022 AMC 12A Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
These problems will be posted once the 2022 AMC 12A is released.
+
 
 +
Let <math>c</math> be a real number, and let <math>z_1</math> and <math>z_2</math> be the two complex numbers satisfying the equation
 +
<math>z^2 - cz + 10 = 0</math>. Points <math>z_1</math>, <math>z_2</math>, <math>\frac{1}{z_1}</math>, and <math>\frac{1}{z_2}</math> are the vertices of (convex) quadrilateral <math>\mathcal{Q}</math> in the complex plane. When the area of <math>\mathcal{Q}</math> obtains its maximum possible value, <math>c</math> is closest to which of the following?
 +
 
 +
<math>\textbf{(A) }4.5 \qquad\textbf{(B) }5 \qquad\textbf{(C) }5.5 \qquad\textbf{(D) }6\qquad\textbf{(E) }6.5</math>
  
 
[[2022 AMC 12A Problems/Problem 22|Solution]]
 
[[2022 AMC 12A Problems/Problem 22|Solution]]
  
 
==Problem 23==
 
==Problem 23==
Let <math>h_n</math> and <math>k_n</math> be the unique relatively prime positive integers such that <cmath>\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...\frac{1}{n}=\frac{h_n}{k_n}.</cmath> Let <math>L_n</math> denote the least common multiple of the numbers <math>1, 2, 3, ..., n</math>. For how many integers with <math>1\le{n}\le{22}</math> is <math>k_n<L_n</math>?
+
Let <math>h_n</math> and <math>k_n</math> be the unique relatively prime positive integers such that <cmath>\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_n}{k_n}.</cmath> Let <math>L_n</math> denote the least common multiple of the numbers <math>1, 2, 3, \ldots, n</math>. For how many integers with <math>1\le{n}\le{22}</math> is <math>k_n<L_n</math>?
 
 
 
 
 
 
  
 +
<math>\textbf{(A) }0 \qquad\textbf{(B) }3 \qquad\textbf{(C) }7 \qquad\textbf{(D) }8\qquad\textbf{(E) }10</math>
  
 
[[2022 AMC 12A Problems/Problem 23|Solution]]
 
[[2022 AMC 12A Problems/Problem 23|Solution]]
Line 187: Line 241:
 
does not contain at least <math>2</math> digits less than <math>2</math>.)
 
does not contain at least <math>2</math> digits less than <math>2</math>.)
  
<math>\textbf{(A)} \, 500 \qquad\textbf{(B)} \, 625 \qquad\textbf{(C)} \, 1089 \qquad\textbf{(D)} \, 1199 \qquad\textbf{(E)} \, 1296 </math>
+
<math>\textbf{(A) }500\qquad\textbf{(B) }625\qquad\textbf{(C) }1089\qquad\textbf{(D) }1199\qquad\textbf{(E) }1296</math>
 
 
  
 
[[2022 AMC 12A Problems/Problem 24|Solution]]
 
[[2022 AMC 12A Problems/Problem 24|Solution]]
Line 200: Line 253:
  
 
==See also==
 
==See also==
{{AMC12 box|year=2022|ab=A|before=[[2021 AMC 12B Problems]]|after=[[2022 AMC 12B Problems]]}}
+
{{AMC12 box|year=2022|ab=A|before=[[2021 Fall AMC 12B Problems]]|after=[[2022 AMC 12B Problems]]}}
  
 
[[Category:AMC 12 Problems]]
 
[[Category:AMC 12 Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 09:27, 25 September 2024

2022 AMC 12A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of \[3+\frac{1}{3+\frac{1}{3+\frac13}}?\] $\textbf{(A)}\ \frac{31}{10}\qquad\textbf{(B)}\ \frac{49}{15}\qquad\textbf{(C)}\ \frac{33}{10}\qquad\textbf{(D)}\ \frac{109}{33}\qquad\textbf{(E)}\ \frac{15}{4}$

Solution

Problem 2

The sum of three numbers is $96.$ The first number is $6$ times the third number, and the third number is $40$ less than the second number. What is the absolute value of the difference between the first and second numbers?

$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 5$

Solution

Problem 3

Five rectangles, $A$, $B$, $C$, $D$, and $E$, are arranged in a square as shown below. These rectangles have dimensions $1\times6$, $2\times4$, $5\times6$, $2\times7$, and $2\times3$, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle? [asy] size(150); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5)); [/asy] $\textbf{(A) }A\qquad\textbf{(B) }B \qquad\textbf{(C) }C \qquad\textbf{(D) }D\qquad\textbf{(E) }E$

Solution

Problem 4

The least common multiple of a positive integer $n$ and $18$ is $180$, and the greatest common divisor of $n$ and $45$ is $15$. What is the sum of the digits of $n$?

$\textbf{(A) } 3 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12$

Solution

Problem 5

The taxicab distance between points $(x_1, y_1)$ and $(x_2, y_2)$ in the coordinate plane is given by \[|x_1 - x_2| + |y_1 - y_2|.\] For how many points $P$ with integer coordinates is the taxicab distance between $P$ and the origin less than or equal to $20$?

$\textbf{(A)} \, 441 \qquad\textbf{(B)} \, 761 \qquad\textbf{(C)} \, 841 \qquad\textbf{(D)} \, 921  \qquad\textbf{(E)} \, 924$

Solution

Problem 6

A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all possible values of $X$?

$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$

Solution

Problem 7

A rectangle is partitioned into $5$ regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

[asy] size(5.5cm); draw((0,0)--(0,2)--(2,2)--(2,0)--cycle); draw((2,0)--(8,0)--(8,2)--(2,2)--cycle); draw((8,0)--(12,0)--(12,2)--(8,2)--cycle); draw((0,2)--(6,2)--(6,4)--(0,4)--cycle); draw((6,2)--(12,2)--(12,4)--(6,4)--cycle); [/asy]

$\textbf{(A) }120\qquad\textbf{(B) }270\qquad\textbf{(C) }360\qquad\textbf{(D) }540\qquad\textbf{(E) }720$

Solution

Problem 8

The infinite product \[\sqrt[3]{10} \cdot \sqrt[3]{\sqrt[3]{10}} \cdot \sqrt[3]{\sqrt[3]{\sqrt[3]{10}}} \cdots\] evaluates to a real number. What is that number?

$\textbf{(A) }\sqrt{10}\qquad\textbf{(B) }\sqrt[3]{100}\qquad\textbf{(C) }\sqrt[4]{1000}\qquad\textbf{(D) }10\qquad\textbf{(E) }10\sqrt[3]{10}$

Solution

Problem 9

On Halloween $31$ children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.

"Are you a truth-teller?" The principal gave a piece of candy to each of the $22$ children who answered yes.

"Are you an alternater?" The principal gave a piece of candy to each of the $15$ children who answered yes.

"Are you a liar?" The principal gave a piece of candy to each of the $9$ children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?

$\textbf{(A) } 7 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 31$

Solution

Problem 10

How many ways are there to split the integers $1$ through $14$ into $7$ pairs such that in each pair, the greater number is at least $2$ times the lesser number?

$\textbf{(A) } 108 \qquad \textbf{(B) } 120 \qquad \textbf{(C) } 126 \qquad \textbf{(D) } 132 \qquad \textbf{(E) } 144$

Solution

Problem 11

What is the product of all real numbers $x$ such that the distance on the number line between $\log_6x$ and $\log_69$ is twice the distance on the number line between $\log_610$ and $1$?

$\textbf{(A) } 10 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 25 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 81$

Solution

Problem 12

Let $M$ be the midpoint of $\overline{AB}$ in regular tetrahedron $ABCD$. What is $\cos(\angle CMD)$?

$\textbf{(A) } \frac14 \qquad \textbf{(B) } \frac13 \qquad \textbf{(C) } \frac25 \qquad \textbf{(D) } \frac12 \qquad \textbf{(E) } \frac{\sqrt{3}}{2}$

Solution

Problem 13

Let $\mathcal{R}$ be the region in the complex plane consisting of all complex numbers $z$ that can be written as the sum of complex numbers $z_1$ and $z_2$, where $z_1$ lies on the segment with endpoints $3$ and $4i$, and $z_2$ has magnitude at most $1$. What integer is closest to the area of $\mathcal{R}$?

$\textbf{(A) } 13 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 16 \qquad \textbf{(E) } 17$

Solution

Problem 14

What is the value of \[(\log 5)^3+(\log 20)^3+(\log 8)(\log 0.25)\] where $\log$ denotes the base-ten logarithm?

$\textbf{(A) } \frac{3}{2} \qquad \textbf{(B) } \frac{7}{4} \qquad \textbf{(C) } 2 \qquad \textbf{(D) } \frac{9}{4} \qquad \textbf{(E) } 3$

Solution

Problem 15

The roots of the polynomial $10x^3-39x^2+29x-6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by $2$ units. What is the volume of the new box?

$\textbf{(A) } \frac{24}{5} \qquad \textbf{(B) } \frac{42}{5} \qquad \textbf{(C) } \frac{81}{5} \qquad \textbf{(D) } 30 \qquad \textbf{(E) } 48$

Solution

Problem 16

A triangular number is a positive integer that can be expressed in the form $t_n=1+2+3+\cdots+n$, for some positive integer $n$. The three smallest triangular numbers that are also perfect squares are $t_1=1=1^2, t_8=36=6^2,$ and $t_{49}=1225=35^2$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?

$\textbf{(A)} ~6 \qquad\textbf{(B)} ~9 \qquad\textbf{(C)} ~12 \qquad\textbf{(D)} ~18 \qquad\textbf{(E)} ~27$

Solution

Problem 17

Suppose $a$ is a real number such that the equation \[a\cdot(\sin{x}+\sin{(2x)}) = \sin{(3x)}\] has more than one solution in the interval $(0, \pi)$. The set of all such $a$ that can be written in the form \[(p,q) \cup (q,r),\] where $p, q,$ and $r$ are real numbers with $p < q< r$. What is $p+q+r$?

$\textbf{(A) } {-}4 \qquad \textbf{(B) } {-}1 \qquad \textbf{(C) } 0 \qquad \textbf{(D) } 1 \qquad \textbf{(E) } 4$

Solution

Problem 18

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations $T_1, T_2, T_3, \dots, T_n$ returns the point $(1,0)$ back to itself?

$\textbf{(A) } 359 \qquad \textbf{(B) } 360\qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

Solution

Problem 19

Suppose that $13$ cards numbered $1, 2, 3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1, 2, 3$ are picked up on the first pass, $4$ and $5$ on the second pass, $6$ on the third pass, $7, 8, 9, 10$ on the fourth pass, and $11, 12, 13$ on the fifth pass. For how many of the $13!$ possible orderings of the cards will the $13$ cards be picked up in exactly two passes?

[asy] size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("7", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("11", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("8", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("6", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("4", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("5", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("9", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("12", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("1", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("13", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("10", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("2", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("3", (37,1.5)); [/asy] $\textbf{(A) } 4082 \qquad \textbf{(B) } 4095 \qquad \textbf{(C) } 4096 \qquad \textbf{(D) } 8178 \qquad \textbf{(E) } 8191$

Solution

Problem 20

Isosceles trapezoid $ABCD$ has parallel sides $\overline{AD}$ and $\overline{BC},$ with $BC < AD$ and $AB = CD.$ There is a point $P$ in the plane such that $PA=1, PB=2, PC=3,$ and $PD=4.$ What is $\tfrac{BC}{AD}?$

$\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}$

Solution

Problem 21

Let \[P(x) = x^{2022} + x^{1011} + 1.\] Which of the following polynomials is a factor of $P(x)$?

$\textbf{(A)} \, x^2 -x + 1 \qquad\textbf{(B)} \, x^2 + x + 1 \qquad\textbf{(C)} \, x^4 + 1 \qquad\textbf{(D)} \, x^6 - x^3 + 1  \qquad\textbf{(E)} \, x^6 + x^3 + 1$

Solution

Problem 22

Let $c$ be a real number, and let $z_1$ and $z_2$ be the two complex numbers satisfying the equation $z^2 - cz + 10 = 0$. Points $z_1$, $z_2$, $\frac{1}{z_1}$, and $\frac{1}{z_2}$ are the vertices of (convex) quadrilateral $\mathcal{Q}$ in the complex plane. When the area of $\mathcal{Q}$ obtains its maximum possible value, $c$ is closest to which of the following?

$\textbf{(A) }4.5 \qquad\textbf{(B) }5 \qquad\textbf{(C) }5.5 \qquad\textbf{(D) }6\qquad\textbf{(E) }6.5$

Solution

Problem 23

Let $h_n$ and $k_n$ be the unique relatively prime positive integers such that \[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{h_n}{k_n}.\] Let $L_n$ denote the least common multiple of the numbers $1, 2, 3, \ldots, n$. For how many integers with $1\le{n}\le{22}$ is $k_n<L_n$?

$\textbf{(A) }0 \qquad\textbf{(B) }3 \qquad\textbf{(C) }7 \qquad\textbf{(D) }8\qquad\textbf{(E) }10$

Solution

Problem 24

How many strings of length $5$ formed from the digits $0$, $1$, $2$, $3$, $4$ are there such that for each $j \in \{1,2,3,4\}$, at least $j$ of the digits are less than $j$? (For example, $02214$ satisfies this condition because it contains at least $1$ digit less than $1$, at least $2$ digits less than $2$, at least $3$ digits less than $3$, and at least $4$ digits less than $4$. The string $23404$ does not satisfy the condition because it does not contain at least $2$ digits less than $2$.)

$\textbf{(A) }500\qquad\textbf{(B) }625\qquad\textbf{(C) }1089\qquad\textbf{(D) }1199\qquad\textbf{(E) }1296$

Solution

Problem 25

A circle with integer radius $r$ is centered at $(r, r)$. Distinct line segments of length $c_i$ connect points $(0, a_i)$ to $(b_i, 0)$ for $1 \le i \le 14$ and are tangent to the circle, where $a_i$, $b_i$, and $c_i$ are all positive integers and $c_1 \le c_2 \le \cdots \le c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the least possible value of $r$?

$\textbf{(A)} ~\frac{21}{5} \qquad\textbf{(B)} ~\frac{85}{13} \qquad\textbf{(C)} ~7 \qquad\textbf{(D)} ~\frac{39}{5} \qquad\textbf{(E)} ~17$

Solution

See also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
2021 Fall AMC 12B Problems
Followed by
2022 AMC 12B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png