Difference between revisions of "2024 AMC 10B Problems/Problem 5"

(Problem)
Line 4: Line 4:
 
In the following expression, Melanie changed some of the plus signs to minus signs:
 
In the following expression, Melanie changed some of the plus signs to minus signs:
 
<cmath>1+3+5+7+...+97+99</cmath>
 
<cmath>1+3+5+7+...+97+99</cmath>
When the new expression was evaluated, it was negative. What is hte least number of plus signs that Melanie could have changed to minus signs?
+
When the new expression was evaluated, it was negative. What is the least number of plus signs that Melanie could have changed to minus signs?
  
 
<math>\textbf{(A) } 14 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18</math>
 
<math>\textbf{(A) } 14 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18</math>

Revision as of 00:38, 14 November 2024

The following problem is from both the 2024 AMC 10B #5 and 2024 AMC 12B #5, so both problems redirect to this page.

Problem

In the following expression, Melanie changed some of the plus signs to minus signs: \[1+3+5+7+...+97+99\] When the new expression was evaluated, it was negative. What is the least number of plus signs that Melanie could have changed to minus signs?

$\textbf{(A) } 14 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 16 \qquad\textbf{(D) } 17 \qquad\textbf{(E) } 18$

Solution 1

B) 15, 35^2=1225*2=2450<2500.

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png