Difference between revisions of "2024 AMC 12B Problems/Problem 23"

(Solution 3)
Line 28: Line 28:
 
[[Image: 2024_AMC_12B_P23.jpeg|thumb|center|600px|]]
 
[[Image: 2024_AMC_12B_P23.jpeg|thumb|center|600px|]]
 
~Kathan
 
~Kathan
 +
 +
==Solution 4 (Vectors)==
 +
 +
Consider the vectors <math>\vec{AV}</math> and <math>\vec{DV}</math>.
 +
If we use a coordinate plane where one of the axes is parallel to one of the sides of the octagon, we can calculate each of the vectors to be
 +
<cmath>\vec{AV} = \left\langle \frac{1}{2},  \frac{1+\sqrt{2}}{2}, h \right\rangle</cmath>
 +
<cmath>\vec{DV} = \left\langle \frac{1}{2},  \frac{-1-\sqrt{2}}{2}, h \right\rangle</cmath>
 +
Now, we must have <math>\vec{AV} \cdot \vec{DV} = 0</math> if the vectors are perpendicular to each other, so
 +
<cmath>\left\langle \frac{1}{2},  \frac{-1-\sqrt{2}}{2}, h \right\rangle \cdot \left\langle \frac{1}{2},  \frac{1+\sqrt{2}}{2}, h \right\rangle = \frac{1}{4} - \frac{3 + 2\sqrt{2}}{4} + h^2 = 0</cmath>
 +
<cmath>h^2=\frac{2+2\sqrt{2}}{4}=\frac{1+\sqrt{2}}{2}</cmath>
 +
 +
Yielding answer choice <math>\boxed{B}</math>.
 +
 +
~tkl
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=B|num-b=22|num-a=24}}
 
{{AMC12 box|year=2024|ab=B|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:32, 14 November 2024

Problem

A right pyramid has regular octagon $ABCDEFGH$ with side length $1$ as its base and apex $V.$ Segments $\overline{AV}$ and $\overline{DV}$ are perpendicular. What is the square of the height of the pyramid?

$\textbf{(A) }1 \qquad \textbf{(B) }\frac{1+\sqrt2}{2} \qquad \textbf{(C) }\sqrt2 \qquad \textbf{(D) }\frac32 \qquad \textbf{(E) }\frac{2+\sqrt2}{3} \qquad$


Solution 1

To find the height of the pyramid, we need the length from the center of the octagon (denote as $I$) to its vertices and the length of AV.

From symmetry, we know that $\overline{AV} = \overline{DV}$, therefore $\triangle{AVD}$ is a 45-45-90 triangle. Denote $\overline{AV}$ as $x$ so that $\overline{AD} = x\sqrt{2}$. Doing some geometry on the isosceles trapezoid $ABCD$ (we know this from the fact that it is a regular octagon) reveals that $\overline{AD}=1+2(\sqrt{2}/2)=1+\sqrt{2}$ and $\overline{AV}=(\overline{AD})/\sqrt{2}=(\sqrt{2}+2)/2$.

To find the length $\overline{IA}$, we cut the octagon into 8 triangles, each with a smallest angle of 45 degrees. Using the law of cosines on $\triangle{AIB}$ we find that ${\overline{IA}}^2=(2+\sqrt{2})/2$.

Finally, using the pythagorean theorem, we can find that ${\overline{IV}}^2={\overline{AV}}^2-{\overline{IA}}^2= {((\sqrt{2}+2)/2)}^2 - (2+\sqrt{2})/2 = \boxed{(1+\sqrt{2})/2}$ which is answer choice $\boxed{B}$.

~username2333

Solution 2 (Less computation)

Let $O$ be the center of the regular octagon. Connect $AD$, and let $I$ be the midpoint of line segment $AD$. It is easy to see that $VI=\frac{1}{2} AD=\frac{1+\sqrt{2}}{2}$ and $OI=\frac{1}{2}AH=\frac{1}{4}$. Hence, \[VO^2=VI^2-OI^2\] \[=\left(\frac{1+\sqrt{2}}{2}\right)^2-\frac{1}{4}\] \[=\frac{1+\sqrt{2}}{2}\] Hence, the answer is $\boxed{B}$.

~tsun26

Solution 3

2024 AMC 12B P23.jpeg

~Kathan

Solution 4 (Vectors)

Consider the vectors $\vec{AV}$ and $\vec{DV}$. If we use a coordinate plane where one of the axes is parallel to one of the sides of the octagon, we can calculate each of the vectors to be \[\vec{AV} = \left\langle \frac{1}{2},  \frac{1+\sqrt{2}}{2}, h \right\rangle\] \[\vec{DV} = \left\langle \frac{1}{2},  \frac{-1-\sqrt{2}}{2}, h \right\rangle\] Now, we must have $\vec{AV} \cdot \vec{DV} = 0$ if the vectors are perpendicular to each other, so \[\left\langle \frac{1}{2},  \frac{-1-\sqrt{2}}{2}, h \right\rangle \cdot \left\langle \frac{1}{2},  \frac{1+\sqrt{2}}{2}, h \right\rangle = \frac{1}{4} - \frac{3 + 2\sqrt{2}}{4} + h^2 = 0\] \[h^2=\frac{2+2\sqrt{2}}{4}=\frac{1+\sqrt{2}}{2}\]

Yielding answer choice $\boxed{B}$.

~tkl

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png