Difference between revisions of "2007 AMC 12B Problems/Problem 14"

m (spaced out answer choices)
Line 12: Line 12:
  
 
<math>s = 4\sqrt{3} \Rightarrow \mathrm {(D)}</math>
 
<math>s = 4\sqrt{3} \Rightarrow \mathrm {(D)}</math>
 +
 +
==See Also==
 +
{{AMC12 box|year=2007|ab=B|num-b=13|num-a=15}}

Revision as of 23:18, 21 February 2008

Problem 14

Point $P$ is inside equilateral $\triangle ABC$. Points $Q$, $R$, and $S$ are the feet of the perpendiculars from $P$ to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. Given that $PQ=1$, $PR=2$, and $PS=3$, what is $AB$?

$\mathrm{(A)}\ 4 \qquad \mathrm{(B)}\ 3\sqrt{3} \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 4\sqrt{3} \qquad \mathrm{(E)}\ 9$

Solution

Drawing $\overline{PA}$, $\overline{PB}$, and $\overline{PC}$, $\triangle ABC$ is split into three smaller triangles. The altitudes of these triangles are given in the problem as $PQ$, $PR$, and $PS$.

Summing the areas of each of these triangles and equating it to the area of the entire triangle, we get:

$\frac{s(1)}{2} + \frac{s(2)}{2} + \frac{s(3)}{2} = \frac{s^2\sqrt{3}}{4}$ where $s$ is the length of a side

$s = 4\sqrt{3} \Rightarrow \mathrm {(D)}$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions