Difference between revisions of "2018 AIME I Problems/Problem 4"

m (Protected "2018 AIME I Problems/Problem 4" ([Edit=Allow only administrators] (expires 23:17, 7 March 2018 (UTC)) [Move=Allow only administrators] (expires 23:17, 7 March 2018 (UTC))))
(Solution 9 Even Faster Law of Cosines(1 variable equation))
 
(101 intermediate revisions by 33 users not shown)
Line 1: Line 1:
 +
==Problem 4==
 +
In <math>\triangle ABC, AB = AC = 10</math> and <math>BC = 12</math>. Point <math>D</math> lies strictly between <math>A</math> and <math>B</math> on <math>\overline{AB}</math> and point <math>E</math> lies strictly between <math>A</math> and <math>C</math> on <math>\overline{AC}</math> so that <math>AD = DE = EC</math>. Then <math>AD</math> can be expressed in the form <math>\dfrac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
  
 +
==Solution (Easiest Law of Cosines)==
 +
We apply Law of Cosines on <math>\angle A</math> twice (one from <math>\triangle ADE</math> and one from <math>\triangle ABC</math>),
 +
 +
\begin{align*}
 +
12^2 &= 10^2 + 10^2 - 2(10)(10) \cdot \cos{A} \\[5pt]
 +
x^2&=x^2+(10-x)^2-2(x)(10-x)\cdot \cos{A}
 +
\end{align*}
 +
 +
Solving for <math>\cos{A}</math> in both equations, we get
 +
\begin{align*}
 +
\cos{A} &= \frac{7}{25} \\
 +
\cos{A} &= \frac{(10-x)^2}{(2)(10-x)(x)} = \frac{10-x}{2x}
 +
\end{align*}
 +
Setting the two equal,
 +
\begin{align*}
 +
\frac{10-x}{2x} &= \frac{7}{25} \\[5pt]
 +
250-25x &= 14x \\[5pt]
 +
x &= \frac{250}{39}.
 +
\end{align*}
 +
Therefore, our answer is <math>\boxed{289}</math>
 +
 +
Note that this strategy of applying LOC on congruent or supplementary angles is very common. It's also how Stewart's Theorem is derived.
 +
 +
'''-RootThreeOverTwo, edits by epiconan'''
 +
 +
==Solution 1 (No Trig)==
 +
<center>
 +
<asy>
 +
import olympiad;
 +
import cse5;
 +
unitsize(10mm);
 +
pathpen=black;
 +
dotfactor=3;
 +
 +
pair B = (0,0), A = (6,8), C = (12,0), D = intersectionpoints(circle(A,250/39),A--B)[0], E = intersectionpoints(circle(D,250/39),A--C)[0], F=intersectionpoints(circle(B,9.6),A--C)[0], G=A/2+E/2;
 +
pair[] dotted = {A,B,C,D,E,F,G};
 +
 +
D(A--B);
 +
D(C--B);
 +
D(A--C);
 +
D(D--E);
 +
pathpen=dashed;
 +
D(B--F);
 +
D(D--G);
 +
 +
dot(dotted);
 +
label("$A$",A,N);
 +
label("$B$",B,SW);
 +
label("$C$",C,SE);
 +
label("$D$",D,NW);
 +
label("$E$",E,NE);
 +
label("$F$",F,NE);
 +
label("$G$",G,NE);
 +
label("$x$",A--D,NW);
 +
label("$x$",D--E,NW);
 +
label("$x$",E--C,NE);
 +
draw(rightanglemark(D,G,E));
 +
draw(rightanglemark(B,F,E));
 +
</asy>
 +
</center>
 +
 +
We draw the altitude from <math>B</math> to <math>\overline{AC}</math> to get point <math>F</math>. We notice that the triangle's height from <math>A</math> to <math>\overline{BC}</math> is 8 because it is a <math>3-4-5</math> Right Triangle. To find the length of <math>\overline{BF}</math>, we let <math>h</math> represent <math>\overline{BF}</math> and set up an equation by finding two ways to express the area. The equation is <math>(8)(12)=(10)(h)</math>, which leaves us with <math>h=9.6</math>. We then solve for the length <math>\overline{AF}</math>, which is done through pythagorean theorm and get <math>\overline{AF}</math> = <math>2.8</math>. We can now see that <math>\triangle AFB</math> is a <math>7-24-25</math> Right Triangle. Thus, we set <math>\overline{AG}</math> as <math>5-</math><math>\tfrac{x}{2}</math>, and yield that <math>\overline{AD}</math> <math>=</math> <math>(</math> <math>5-</math> <math>\tfrac{x}{2}</math> <math>)</math> <math>(</math> <math>\tfrac{25}{7}</math> <math>)</math>. Now, we can see <math>x</math> = <math>(</math> <math>5-</math> <math>\tfrac{x}{2}</math> <math>)</math> <math>(</math> <math>\tfrac{25}{7}</math> <math>)</math>. Solving this equation, we yield <math>39x=250</math>, or <math>x=</math> <math>\tfrac{250}{39}</math>. Thus, our final answer is <math>250+39=\boxed{289}</math>.
 +
 +
~bluebacon008
 +
 +
Diagram edited by Afly
 +
 +
==Solution 2 (Easy Similar Triangles)==
 +
We start by adding a few points to the diagram. Call <math>F</math> the midpoint of <math>AE</math>, and <math>G</math> the midpoint of <math>BC</math>. (Note that <math>DF</math> and <math>AG</math> are altitudes of their respective triangles). We also call <math>\angle BAC = \theta</math>. Since triangle <math>ADE</math> is isosceles, <math>\angle AED = \theta</math>, and <math>\angle ADF = \angle EDF = 90 - \theta</math>. Since <math>\angle DEA = \theta</math>, <math>\angle DEC = 180 - \theta</math> and <math>\angle EDC = \angle ECD = \frac{\theta}{2}</math>. Since <math>FDC</math> is a right triangle, <math>\angle FDC = 180 - 90 - \frac{\theta}{2} = \frac{180-m}{2}</math>.
 +
 +
Since <math>\angle BAG = \frac{\theta}{2}</math> and <math>\angle ABG = \frac{180-m}{2}</math>, triangles <math>ABG</math> and <math>CDF</math> are similar by Angle-Angle similarity. Using similar triangle ratios, we have <math>\frac{AG}{BG} = \frac{CF}{DF}</math>. <math>AG = 8</math> and <math>BG = 6</math> because there are <math>2</math> <math>6-8-10</math> triangles in the problem. Call <math>AD = x</math>. Then <math>CE = x</math>, <math>AE = 10-x</math>, and <math>EF = \frac{10-x}{2}</math>. Thus <math>CF = x + \frac{10-x}{2}</math>. Our ratio now becomes <math>\frac{8}{6} = \frac{x+ \frac{10-x}{2}}{DF}</math>. Solving for <math>DF</math> gives us <math>DF = \frac{30+3x}{8}</math>. Since <math>DF</math> is a height of the triangle <math>ADE</math>, <math>FE^2 + DF^2 = x^2</math>, or <math>DF = \sqrt{x^2 - (\frac{10-x}{2})^2}</math>. Solving the equation <math>\frac{30+3x}{8} = \sqrt{x^2 - (\frac{10-x}{2})^2}</math> gives us <math>x = \frac{250}{39}</math>, so our answer is <math>250+39 = \boxed{289}</math>.
 +
 +
==Solution 3 (Algebra w/ Law of Cosines)==
 +
As in the diagram, let <math>DE = x</math>. Consider point <math>G</math> on the diagram shown above. Our goal is to be able to perform Pythagorean Theorem on <math>DG, GC</math>, and <math>DC</math>. Let <math>GE = \frac{10-x}{2}</math>. Therefore, it is trivial to see that <math>GC^2 = \Big(x + \frac{10-x}{2}\Big)^2</math> (leave everything squared so that it cancels nicely at the end). By Pythagorean Theorem on Triangle <math>DGE</math>, we know that <math>DG^2 = x^2 - \Big(\frac{10-x}{2}\Big)^2</math>. Finally, we apply Law of Cosines on Triangle <math>DBC</math>. We know that <math>\cos(\angle DBC) = \frac{3}{5}</math>. Therefore, we get that <math>DC^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5}</math>. We can now do our final calculation:
 +
<cmath>
 +
DG^2 + GC^2 = DC^2 \implies x^2 - \Big(\frac{10-x}{2}\Big)^2 + \Big(x + \frac{10-x}{2}\Big)^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5}
 +
</cmath>
 +
After some quick cleaning up, we get
 +
<cmath>
 +
30x = \frac{72}{5} + 100 \implies x = \frac{250}{39}
 +
</cmath>
 +
Therefore, our answer is <math>250+39=\boxed{289}</math>.
 +
 +
~awesome1st
 +
 +
==Solution 4 (Coordinates)==
 +
Let <math>B = (0, 0)</math>, <math>C = (12, 0)</math>, and <math>A = (6, 8)</math>. Then, let <math>x</math> be in the interval <math>0<x<2</math> and parametrically define <math>D</math> and <math>E</math> as <math>(6-3x, 8-4x)</math> and <math>(12-3x, 4x)</math> respectively. Note that <math>AD = 5x</math>, so <math>DE = 5x</math>. This means that
 +
<cmath>\begin{align*}
 +
\sqrt{36+(8x-8)^2} &= 5x\\
 +
36+(8x-8)^2 &= 25x^2\\
 +
64x^2-128x+100 &= 25x^2\\
 +
39x^2-128x+100 &= 0\\
 +
x &= \dfrac{128\pm\sqrt{16384-15600}}{78}\\
 +
x &= \dfrac{100}{78}, 2\\
 +
\end{align*}</cmath>
 +
However, since <math>2</math> is extraneous by definition, <math>x=\dfrac{50}{39}\implies AD = \dfrac{250}{39}\implies\boxed{289}</math> ~ mathwiz0803
 +
 +
==Solution 5 (Law of Cosines)==
 +
As shown in the diagram, let <math>x</math> denote <math>\overline{AD}</math>. Let us denote the foot of the altitude of <math>A</math> to <math>\overline{BC}</math> as <math>F</math>. Note that <math>\overline{AE}</math> can be expressed as <math>10-x</math> and <math>\triangle{ABF}</math> is a <math>6-8-10</math> triangle . Therefore, <math>\sin(\angle{BAF})=\frac{3}{5}</math> and <math>\cos(\angle{BAF})=\frac{4}{5}</math>. Before we can proceed with the Law of Cosines, we must determine <math>\cos(\angle{BAC})=\cos(2\cdot \angle{BAF})=\cos^2(\angle{BAF})-\sin^2(\angle{BAF})=\frac{7}{25}</math>. Using LOC, we can write the following statement:
 +
<cmath>(\overline{DE})^2=(\overline{AD})^2+\overline{AE}^2-2(\overline{AD})(\overline{AE})\cos(\angle{BAC})\implies</cmath>
 +
<cmath>x^2=x^2+(10-x)^2-2(x)(10-x)\left(\frac{7}{25}\right)\implies</cmath>
 +
<cmath>0=(10-x)^2-\frac{14x}{25}(10-x)\implies</cmath>
 +
<cmath>0=10-x-\frac{14x}{25}\implies</cmath>
 +
<cmath>10=\frac{39x}{25}\implies x=\frac{250}{39}</cmath>
 +
Thus, the desired answer is <math>\boxed{289}</math> ~ blitzkrieg21
 +
 +
==Solution 6==
 +
In isosceles triangle, draw the altitude from <math>D</math> onto <math>\overline{AD}</math>. Let the point of intersection be <math>X</math>. Clearly, <math>AE=10-AD</math>, and hence <math>AX=\frac{10-AD}{2}</math>.
 +
 +
Now, we recognise that the perpendicular from <math>A</math> onto <math>\overline{AD}</math> gives us two <math>6</math>-<math>8</math>-<math>10</math> triangles. So, we calculate <math>\sin \angle ABC=\frac{4}{5}</math> and <math>\cos \angle ABC=\frac{3}{5}</math>
 +
 +
<math>\angle BAC = 180-2\cdot\angle ABC</math>. And hence,
 +
 +
<math>\cos \angle BAC = \cos \angle (180-2\cdot\angle ABC)
 +
= -\cos (2\cdot\angle ABC)
 +
= \sin^2 \angle ABC - \cos^2 \angle ABC
 +
= 2\cos^2 \angle ABC - 1
 +
= \frac{32}{25}-\frac{25}{25}=\frac{7}{25}</math>
 +
 +
Inspecting <math>\triangle ADX</math> gives us <math>\cos \angle BAC = \frac{\frac{10-x}{2}}{x} = \frac{10-x}{2x}</math>
 +
Solving the equation <math>\frac{10-x}{2x}=\frac{7}{25}</math> gives <math>x= \frac{250}{39} \implies\boxed{289}</math>
 +
 +
~novus677
 +
 +
==Solution 7 (Area into Similar Triangles)==
 +
After calling <math>x=AD=DE=EC</math> and <math>10-x=AE=BD</math>, we see we have length ratios in terms of <math>x</math>, which motivates area ratios. We look at the area of triangle <math>ADC</math> in two ways in order to find <math>DG</math> (perpendicular from <math>D</math> to <math>AB</math>), and then use similar triangles to find <math>x</math>.
 +
 +
Using area ratios, <math>[ADC] = \frac{x}{10}\cdot[ABC] = \frac{x}{10} \cdot 48 = \frac{24x}{5}</math>. (To find the total area <math>[ABC] = 48</math>, drop the altitudes from <math>A</math> to <math>BC</math>, and call the foot of the altitude <math>F</math>. By the 6-8-10 triangle, the height <math>AF</math> is <math>8</math> and the area of <math>ABC</math> is <math>48</math>.)
 +
 +
The second way of finding the area of triangle <math>ACD</math> is <math>\frac{1}{2}bh</math>. The base is <math>AC=10</math>, and <math>DG</math> is the height. Therefore,
 +
 +
\begin{align*}
 +
[ACD] = \frac{24x}{5} &= \frac{1}{2} \cdot 10 \cdot DG \\[5pt]
 +
\frac{24x}{25} &= DG
 +
\end{align*}
 +
 +
Now we have <math>DG</math> in terms of <math>x</math>, we use the similar triangles <math>GCD</math> and <math>FAC</math> and set up the proportion
 +
\begin{align*}
 +
\frac{DG}{CF} &= \frac{GC}{FA} \\[5pt]
 +
\frac{\frac{24x}{25}}{6} &= \frac{5+\frac{x}{2}}{8} \\[5pt]
 +
x &= \frac{250}{39}.
 +
\end{align*}
 +
So, our answer is <math>\boxed{289}</math>.
 +
'''-epiconan'''
 +
 +
==Solution 8 (Easiest way- Coordinates without bash)==
 +
Let <math>B=(0, 0)</math>, and <math>C=(12, 0)</math>. From there, we know that <math>A=(6, 8)</math>, so line <math>AB</math> is <math>y=\frac{4}{3}x</math>. Hence, <math>D=(a, \frac{4}{3}a)</math> for some <math>a</math>, and <math>BD=\frac{5}{3}a</math> so <math>AD=10-\frac{5}{3}a</math>. Now, notice that by symmetry, <math>E=(6+a, 8-\frac{4}{3}a)</math>, so <math>ED^2=6^2+(8-\frac{8}{3}a)^2</math>. Because <math>AD=ED</math>, we now have <math>(10-\frac{5}{3})^2=6^2+(8-\frac{8}{3}a)^2</math>, which simplifies to <math>\frac{64}{9}a^2-\frac{128}{3}a+100=\frac{25}{9}a^2-\frac{100}{3}a+100</math>, so <math>\frac{39}{9}a=\frac{13}{3}a=\frac{28}{3}</math>, and <math>a=\frac{28}{13}</math>.
 +
It follows that <math>AD=10-\frac{5}{3}\times\frac{28}{13}=10-\frac{140}{39}=\frac{390-140}{39}=\frac{250}{39}</math>, and our answer is <math>250+39=\boxed{289}</math>.
 +
 +
-Stormersyle
 +
 +
== Solution 9 one second accurate solve(1 variable equation)==
 +
 +
Doing law of cosines we know that <math>\cos A</math> is <math>\frac{7}{25}.</math>* Dropping the perpendicular from <math>D</math> to <math>AE</math> we get that <cmath>\frac{10-x}{2}=\frac{7x}{25}.</cmath>
 +
Solving for <math>x</math> we get <math>\frac{250}{39}</math> so our answer is <math>289</math>.
 +
 +
-harsha12345
 +
 +
* It is good to remember that doubling the smallest angle of a 3-4-5 triangle gives the larger (not right) angle in a 7-24-25 triangle.
 +
 +
== Solution 10 (Law of Sines)==
 +
 +
Let's label <math>\angle A = \theta</math> and <math>\angle ECD = \alpha</math>. Using isosceles triangle properties and the triangle angle sum equation, we get <cmath>180-(180-2\theta+\alpha) + \frac{180-\theta}{2} + \left(\frac{180-\theta}{2} - \alpha\right) = 180.</cmath> Solving, we find <math>\theta = 2 \alpha</math>.
 +
 +
 +
Relabelling our triangle, we get <math>\angle ABC = 90 - \alpha</math>. Dropping an altitude from <math>A</math> to <math>BC</math> and using the Pythagorean theorem, we find <math>[ABC] = 48</math>. Using the sine area formula, we see <math>\frac12 \cdot 10 \cdot 12 \cdot \sin(90-\alpha) = 48</math>. Plugging in our sine angle cofunction identity, <math>\sin(90-\alpha) = \cos(\alpha)</math>, we get <math>\alpha = \cos{^{-1}}{\frac45}</math>.
 +
 +
 +
Now, using the Law of Sines on <math>\triangle ADE</math>, we get <cmath>\frac{\sin{2\alpha}}{\frac{p}{q}} = \frac{\sin{(180-4\alpha)}}{10-\frac{p}{q}}.</cmath> After applying numerous trigonometric and algebraic tricks, identities, and simplifications, such as <math>\sin{(180-4\alpha)}=\sin{4\alpha}</math> and <math>\sin{\left(\cos{^{-1}}{\frac45}\right)} = \frac35</math>, we find <math>\frac{p}{q} = \frac{10\sin{2\alpha}}{\sin{4\alpha}+\sin{2\alpha}} = \frac{250}{39}</math>.
 +
 +
 +
 +
Therefore, our answer is <math>250 + 39 = \boxed{289}</math>.
 +
 +
 +
~Tiblis
 +
 +
== Solution 11 (Trigonometry)==
 +
We start by labelling a few angles (all of them in degrees). Let <math>\angle{BAC}=2\alpha = \angle{AED}, \angle{EDC}=\angle{ECD}=\alpha, \angle{DEC}=180-2\alpha, \angle{BDC}=3\alpha, \angle{DCB}=90-2\alpha, \angle{DBC}=90-\alpha</math>. Also let <math>AD=a</math>. By sine rule in <math>\triangle{ADE},</math> we get <math>\frac{a}{\sin{2\alpha}}=\frac{10-a}{\sin{4\alpha}} \implies \cos{2\alpha}=\frac{5}{a}-\frac{1}{2}</math>
 +
Using sine rule in <math>\triangle{ABC}</math>, we get <math>\sin{\alpha}=\frac{3}{5}</math>. Hence we get <math>\cos{2\alpha}=1-2\sin^2{\alpha}=1-\frac{18}{25}=\frac{7}{25}</math>. Hence <math>\frac{5}{a}=\frac{1}{2}+\frac{7}{25}=\frac{39}{50} \implies a=\frac{250}{39}</math>. Therefore, our answer is <math>\boxed{289}</math>
 +
 +
Alternatively, use sine rule in <math>\triangle{BDC}</math>. (It’s easier)
 +
 +
~Prabh1512
 +
 +
== Solution 12 (Double Angle Identity)==
 +
 +
We let <math>AD=x</math>. Then, angle <math>A</math> is <math>2\sin^{-1}(\frac{3}{5})</math> and so is angle <math>AED</math>. We note that <math>AE=10-x</math>. We drop an altitude from <math>D</math> to <math>AE</math>, and we call the foot <math>F</math>. We note that <math>AF=\frac{10-x}{2}</math>. Using the double angle identity, we have <math>\sin(2\sin^{-1}(\frac{3}{5}))=2(\frac{3}{5})(\frac{4}{5})=\frac{24}{25}.</math> Therefore, <math>DG=\frac{24}{25}AD.</math> We now use the Pythagorean Theorem, which gives <math>(\frac{10-x}{2})^2+(\frac{24}{25}x)^2=x^2</math>. Rearranging and simplifying, this becomes <math>429x^2-12500x+62500=0</math>. Using the quadratic formula, this is <math>\frac{12500\pm\sqrt{12500^2-250000\cdot429}}{858}</math>. We take out a <math>10000</math> from the square root and make it a <math>100</math> outside of the square root to make it simpler. We end up with <math>\frac{12500\pm7000}{858}</math>. We note that this must be less than 10 to ensure that <math>10-x</math> is positive. Therefore, we take the minus, and we get <math>\frac{5500}{858}=\frac{250}{39} \implies \fbox{289}.</math>
 +
 +
~john0512
 +
 +
==Video Solution==
 +
 +
https://www.youtube.com/watch?v=iE8paW_ICxw
 +
 +
 +
https://youtu.be/dI6uZ67Ae2s ~yofro
 +
 +
==See Also==
 +
{{AIME box|year=2018|n=I|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Latest revision as of 21:55, 14 December 2024

Problem 4

In $\triangle ABC, AB = AC = 10$ and $BC = 12$. Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD = DE = EC$. Then $AD$ can be expressed in the form $\dfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution (Easiest Law of Cosines)

We apply Law of Cosines on $\angle A$ twice (one from $\triangle ADE$ and one from $\triangle ABC$),

\begin{align*} 12^2 &= 10^2 + 10^2 - 2(10)(10) \cdot \cos{A} \\[5pt] x^2&=x^2+(10-x)^2-2(x)(10-x)\cdot \cos{A} \end{align*}

Solving for $\cos{A}$ in both equations, we get \begin{align*} \cos{A} &= \frac{7}{25} \\ \cos{A} &= \frac{(10-x)^2}{(2)(10-x)(x)} = \frac{10-x}{2x} \end{align*} Setting the two equal, \begin{align*} \frac{10-x}{2x} &= \frac{7}{25} \\[5pt] 250-25x &= 14x \\[5pt] x &= \frac{250}{39}. \end{align*} Therefore, our answer is $\boxed{289}$

Note that this strategy of applying LOC on congruent or supplementary angles is very common. It's also how Stewart's Theorem is derived.

-RootThreeOverTwo, edits by epiconan

Solution 1 (No Trig)

[asy] import olympiad; import cse5; unitsize(10mm); pathpen=black; dotfactor=3;  pair B = (0,0), A = (6,8), C = (12,0), D = intersectionpoints(circle(A,250/39),A--B)[0], E = intersectionpoints(circle(D,250/39),A--C)[0], F=intersectionpoints(circle(B,9.6),A--C)[0], G=A/2+E/2; pair[] dotted = {A,B,C,D,E,F,G};  D(A--B); D(C--B); D(A--C); D(D--E); pathpen=dashed; D(B--F); D(D--G);  dot(dotted); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NW); label("$E$",E,NE); label("$F$",F,NE); label("$G$",G,NE); label("$x$",A--D,NW); label("$x$",D--E,NW); label("$x$",E--C,NE); draw(rightanglemark(D,G,E)); draw(rightanglemark(B,F,E)); [/asy]

We draw the altitude from $B$ to $\overline{AC}$ to get point $F$. We notice that the triangle's height from $A$ to $\overline{BC}$ is 8 because it is a $3-4-5$ Right Triangle. To find the length of $\overline{BF}$, we let $h$ represent $\overline{BF}$ and set up an equation by finding two ways to express the area. The equation is $(8)(12)=(10)(h)$, which leaves us with $h=9.6$. We then solve for the length $\overline{AF}$, which is done through pythagorean theorm and get $\overline{AF}$ = $2.8$. We can now see that $\triangle AFB$ is a $7-24-25$ Right Triangle. Thus, we set $\overline{AG}$ as $5-$$\tfrac{x}{2}$, and yield that $\overline{AD}$ $=$ $($ $5-$ $\tfrac{x}{2}$ $)$ $($ $\tfrac{25}{7}$ $)$. Now, we can see $x$ = $($ $5-$ $\tfrac{x}{2}$ $)$ $($ $\tfrac{25}{7}$ $)$. Solving this equation, we yield $39x=250$, or $x=$ $\tfrac{250}{39}$. Thus, our final answer is $250+39=\boxed{289}$.

~bluebacon008

Diagram edited by Afly

Solution 2 (Easy Similar Triangles)

We start by adding a few points to the diagram. Call $F$ the midpoint of $AE$, and $G$ the midpoint of $BC$. (Note that $DF$ and $AG$ are altitudes of their respective triangles). We also call $\angle BAC = \theta$. Since triangle $ADE$ is isosceles, $\angle AED = \theta$, and $\angle ADF = \angle EDF = 90 - \theta$. Since $\angle DEA = \theta$, $\angle DEC = 180 - \theta$ and $\angle EDC = \angle ECD = \frac{\theta}{2}$. Since $FDC$ is a right triangle, $\angle FDC = 180 - 90 - \frac{\theta}{2} = \frac{180-m}{2}$.

Since $\angle BAG = \frac{\theta}{2}$ and $\angle ABG = \frac{180-m}{2}$, triangles $ABG$ and $CDF$ are similar by Angle-Angle similarity. Using similar triangle ratios, we have $\frac{AG}{BG} = \frac{CF}{DF}$. $AG = 8$ and $BG = 6$ because there are $2$ $6-8-10$ triangles in the problem. Call $AD = x$. Then $CE = x$, $AE = 10-x$, and $EF = \frac{10-x}{2}$. Thus $CF = x + \frac{10-x}{2}$. Our ratio now becomes $\frac{8}{6} = \frac{x+ \frac{10-x}{2}}{DF}$. Solving for $DF$ gives us $DF = \frac{30+3x}{8}$. Since $DF$ is a height of the triangle $ADE$, $FE^2 + DF^2 = x^2$, or $DF = \sqrt{x^2 - (\frac{10-x}{2})^2}$. Solving the equation $\frac{30+3x}{8} = \sqrt{x^2 - (\frac{10-x}{2})^2}$ gives us $x = \frac{250}{39}$, so our answer is $250+39 = \boxed{289}$.

Solution 3 (Algebra w/ Law of Cosines)

As in the diagram, let $DE = x$. Consider point $G$ on the diagram shown above. Our goal is to be able to perform Pythagorean Theorem on $DG, GC$, and $DC$. Let $GE = \frac{10-x}{2}$. Therefore, it is trivial to see that $GC^2 = \Big(x + \frac{10-x}{2}\Big)^2$ (leave everything squared so that it cancels nicely at the end). By Pythagorean Theorem on Triangle $DGE$, we know that $DG^2 = x^2 - \Big(\frac{10-x}{2}\Big)^2$. Finally, we apply Law of Cosines on Triangle $DBC$. We know that $\cos(\angle DBC) = \frac{3}{5}$. Therefore, we get that $DC^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5}$. We can now do our final calculation: \[DG^2 + GC^2 = DC^2 \implies x^2 - \Big(\frac{10-x}{2}\Big)^2 + \Big(x + \frac{10-x}{2}\Big)^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5}\] After some quick cleaning up, we get \[30x = \frac{72}{5} + 100 \implies x = \frac{250}{39}\] Therefore, our answer is $250+39=\boxed{289}$.

~awesome1st

Solution 4 (Coordinates)

Let $B = (0, 0)$, $C = (12, 0)$, and $A = (6, 8)$. Then, let $x$ be in the interval $0<x<2$ and parametrically define $D$ and $E$ as $(6-3x, 8-4x)$ and $(12-3x, 4x)$ respectively. Note that $AD = 5x$, so $DE = 5x$. This means that \begin{align*} \sqrt{36+(8x-8)^2} &= 5x\\ 36+(8x-8)^2 &= 25x^2\\ 64x^2-128x+100 &= 25x^2\\ 39x^2-128x+100 &= 0\\ x &= \dfrac{128\pm\sqrt{16384-15600}}{78}\\ x &= \dfrac{100}{78}, 2\\ \end{align*} However, since $2$ is extraneous by definition, $x=\dfrac{50}{39}\implies AD = \dfrac{250}{39}\implies\boxed{289}$ ~ mathwiz0803

Solution 5 (Law of Cosines)

As shown in the diagram, let $x$ denote $\overline{AD}$. Let us denote the foot of the altitude of $A$ to $\overline{BC}$ as $F$. Note that $\overline{AE}$ can be expressed as $10-x$ and $\triangle{ABF}$ is a $6-8-10$ triangle . Therefore, $\sin(\angle{BAF})=\frac{3}{5}$ and $\cos(\angle{BAF})=\frac{4}{5}$. Before we can proceed with the Law of Cosines, we must determine $\cos(\angle{BAC})=\cos(2\cdot \angle{BAF})=\cos^2(\angle{BAF})-\sin^2(\angle{BAF})=\frac{7}{25}$. Using LOC, we can write the following statement: \[(\overline{DE})^2=(\overline{AD})^2+\overline{AE}^2-2(\overline{AD})(\overline{AE})\cos(\angle{BAC})\implies\] \[x^2=x^2+(10-x)^2-2(x)(10-x)\left(\frac{7}{25}\right)\implies\] \[0=(10-x)^2-\frac{14x}{25}(10-x)\implies\] \[0=10-x-\frac{14x}{25}\implies\] \[10=\frac{39x}{25}\implies x=\frac{250}{39}\] Thus, the desired answer is $\boxed{289}$ ~ blitzkrieg21

Solution 6

In isosceles triangle, draw the altitude from $D$ onto $\overline{AD}$. Let the point of intersection be $X$. Clearly, $AE=10-AD$, and hence $AX=\frac{10-AD}{2}$.

Now, we recognise that the perpendicular from $A$ onto $\overline{AD}$ gives us two $6$-$8$-$10$ triangles. So, we calculate $\sin \angle ABC=\frac{4}{5}$ and $\cos \angle ABC=\frac{3}{5}$

$\angle BAC = 180-2\cdot\angle ABC$. And hence,

$\cos \angle BAC = \cos \angle (180-2\cdot\angle ABC) = -\cos (2\cdot\angle ABC) = \sin^2 \angle ABC - \cos^2 \angle ABC = 2\cos^2 \angle ABC - 1 = \frac{32}{25}-\frac{25}{25}=\frac{7}{25}$

Inspecting $\triangle ADX$ gives us $\cos \angle BAC = \frac{\frac{10-x}{2}}{x} = \frac{10-x}{2x}$ Solving the equation $\frac{10-x}{2x}=\frac{7}{25}$ gives $x= \frac{250}{39} \implies\boxed{289}$

~novus677

Solution 7 (Area into Similar Triangles)

After calling $x=AD=DE=EC$ and $10-x=AE=BD$, we see we have length ratios in terms of $x$, which motivates area ratios. We look at the area of triangle $ADC$ in two ways in order to find $DG$ (perpendicular from $D$ to $AB$), and then use similar triangles to find $x$.

Using area ratios, $[ADC] = \frac{x}{10}\cdot[ABC] = \frac{x}{10} \cdot 48 = \frac{24x}{5}$. (To find the total area $[ABC] = 48$, drop the altitudes from $A$ to $BC$, and call the foot of the altitude $F$. By the 6-8-10 triangle, the height $AF$ is $8$ and the area of $ABC$ is $48$.)

The second way of finding the area of triangle $ACD$ is $\frac{1}{2}bh$. The base is $AC=10$, and $DG$ is the height. Therefore,

\begin{align*} [ACD] = \frac{24x}{5} &= \frac{1}{2} \cdot 10 \cdot DG \\[5pt] \frac{24x}{25} &= DG \end{align*}

Now we have $DG$ in terms of $x$, we use the similar triangles $GCD$ and $FAC$ and set up the proportion \begin{align*} \frac{DG}{CF} &= \frac{GC}{FA} \\[5pt] \frac{\frac{24x}{25}}{6} &= \frac{5+\frac{x}{2}}{8} \\[5pt] x &= \frac{250}{39}. \end{align*} So, our answer is $\boxed{289}$. -epiconan

Solution 8 (Easiest way- Coordinates without bash)

Let $B=(0, 0)$, and $C=(12, 0)$. From there, we know that $A=(6, 8)$, so line $AB$ is $y=\frac{4}{3}x$. Hence, $D=(a, \frac{4}{3}a)$ for some $a$, and $BD=\frac{5}{3}a$ so $AD=10-\frac{5}{3}a$. Now, notice that by symmetry, $E=(6+a, 8-\frac{4}{3}a)$, so $ED^2=6^2+(8-\frac{8}{3}a)^2$. Because $AD=ED$, we now have $(10-\frac{5}{3})^2=6^2+(8-\frac{8}{3}a)^2$, which simplifies to $\frac{64}{9}a^2-\frac{128}{3}a+100=\frac{25}{9}a^2-\frac{100}{3}a+100$, so $\frac{39}{9}a=\frac{13}{3}a=\frac{28}{3}$, and $a=\frac{28}{13}$. It follows that $AD=10-\frac{5}{3}\times\frac{28}{13}=10-\frac{140}{39}=\frac{390-140}{39}=\frac{250}{39}$, and our answer is $250+39=\boxed{289}$.

-Stormersyle

Solution 9 one second accurate solve(1 variable equation)

Doing law of cosines we know that $\cos A$ is $\frac{7}{25}.$* Dropping the perpendicular from $D$ to $AE$ we get that \[\frac{10-x}{2}=\frac{7x}{25}.\] Solving for $x$ we get $\frac{250}{39}$ so our answer is $289$.

-harsha12345

  • It is good to remember that doubling the smallest angle of a 3-4-5 triangle gives the larger (not right) angle in a 7-24-25 triangle.

Solution 10 (Law of Sines)

Let's label $\angle A = \theta$ and $\angle ECD = \alpha$. Using isosceles triangle properties and the triangle angle sum equation, we get \[180-(180-2\theta+\alpha) + \frac{180-\theta}{2} + \left(\frac{180-\theta}{2} - \alpha\right) = 180.\] Solving, we find $\theta = 2 \alpha$.


Relabelling our triangle, we get $\angle ABC = 90 - \alpha$. Dropping an altitude from $A$ to $BC$ and using the Pythagorean theorem, we find $[ABC] = 48$. Using the sine area formula, we see $\frac12 \cdot 10 \cdot 12 \cdot \sin(90-\alpha) = 48$. Plugging in our sine angle cofunction identity, $\sin(90-\alpha) = \cos(\alpha)$, we get $\alpha = \cos{^{-1}}{\frac45}$.


Now, using the Law of Sines on $\triangle ADE$, we get \[\frac{\sin{2\alpha}}{\frac{p}{q}} = \frac{\sin{(180-4\alpha)}}{10-\frac{p}{q}}.\] After applying numerous trigonometric and algebraic tricks, identities, and simplifications, such as $\sin{(180-4\alpha)}=\sin{4\alpha}$ and $\sin{\left(\cos{^{-1}}{\frac45}\right)} = \frac35$, we find $\frac{p}{q} = \frac{10\sin{2\alpha}}{\sin{4\alpha}+\sin{2\alpha}} = \frac{250}{39}$.


Therefore, our answer is $250 + 39 = \boxed{289}$.


~Tiblis

Solution 11 (Trigonometry)

We start by labelling a few angles (all of them in degrees). Let $\angle{BAC}=2\alpha = \angle{AED}, \angle{EDC}=\angle{ECD}=\alpha, \angle{DEC}=180-2\alpha, \angle{BDC}=3\alpha, \angle{DCB}=90-2\alpha, \angle{DBC}=90-\alpha$. Also let $AD=a$. By sine rule in $\triangle{ADE},$ we get $\frac{a}{\sin{2\alpha}}=\frac{10-a}{\sin{4\alpha}} \implies \cos{2\alpha}=\frac{5}{a}-\frac{1}{2}$ Using sine rule in $\triangle{ABC}$, we get $\sin{\alpha}=\frac{3}{5}$. Hence we get $\cos{2\alpha}=1-2\sin^2{\alpha}=1-\frac{18}{25}=\frac{7}{25}$. Hence $\frac{5}{a}=\frac{1}{2}+\frac{7}{25}=\frac{39}{50} \implies a=\frac{250}{39}$. Therefore, our answer is $\boxed{289}$

Alternatively, use sine rule in $\triangle{BDC}$. (It’s easier)

~Prabh1512

Solution 12 (Double Angle Identity)

We let $AD=x$. Then, angle $A$ is $2\sin^{-1}(\frac{3}{5})$ and so is angle $AED$. We note that $AE=10-x$. We drop an altitude from $D$ to $AE$, and we call the foot $F$. We note that $AF=\frac{10-x}{2}$. Using the double angle identity, we have $\sin(2\sin^{-1}(\frac{3}{5}))=2(\frac{3}{5})(\frac{4}{5})=\frac{24}{25}.$ Therefore, $DG=\frac{24}{25}AD.$ We now use the Pythagorean Theorem, which gives $(\frac{10-x}{2})^2+(\frac{24}{25}x)^2=x^2$. Rearranging and simplifying, this becomes $429x^2-12500x+62500=0$. Using the quadratic formula, this is $\frac{12500\pm\sqrt{12500^2-250000\cdot429}}{858}$. We take out a $10000$ from the square root and make it a $100$ outside of the square root to make it simpler. We end up with $\frac{12500\pm7000}{858}$. We note that this must be less than 10 to ensure that $10-x$ is positive. Therefore, we take the minus, and we get $\frac{5500}{858}=\frac{250}{39} \implies \fbox{289}.$

~john0512

Video Solution

https://www.youtube.com/watch?v=iE8paW_ICxw


https://youtu.be/dI6uZ67Ae2s ~yofro

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png