Difference between revisions of "2006 AIME II Problems/Problem 11"

m (minor fixes)
(cleanup notation)
Line 4: Line 4:
 
== Solution ==
 
== Solution ==
 
Define the sum as <math>s</math>. Since <math>a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1} </math>, the sum will be:
 
Define the sum as <math>s</math>. Since <math>a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1} </math>, the sum will be:
:<math>s = (a_4 - a_3 - a_2) + (a_5 - a_4 - a_3) + \ldots (a_{30} - a_{29} - a_{28}) + a_{28}</math>
+
<center><math>\begin{align*}s &= a_{28} + \sum^{27}_{k=1} (a_{k+3}-a_{k+2}-a_{k+1}) \
:<math>s = (a_4+ a_5 \ldots a_{30}) - (a_3 + a_4 + \ldots a_{29}) - (a_2 + a_3 + \ldots a_{28}) + a_{28} + (a_1 - a_1)</math>
+
&= a_{28} + \left(\sum^{30}_{k=4} a_{k} - \sum^{29}_{k=3} a_{k}\right) - \left(\sum^{28}_{k=2} a_{k}\right)\
 +
&= a_{28} + (a_{30} - a_{3}) - \left(\sum^{28}_{k=2} a_{k}\right) = a_{28} + a_{30} - a_{3} - (s - a_{1})\
 +
&= -s + a_{28} + a_{30}
 +
\end{align*}</math></center>
  
The first two groups [[telescope]]. The third resembles <math>s</math>.
+
Thus <math>s = \frac{a_{28} + a_{30}}{2}</math>, and <math>a_{28},\,a_{30}</math> are both given; the last four digits of their sum is <math>3668</math>, and half of that is <math>1834</math>. Therefore, the answer is <math>\boxed{834}</math>.
 
 
:<math>s\ = a_1 - a_3 + a_{28} + a_{30} - s</math>
 
:<math>2s\ = a_{28} + a_{30}</math>
 
:<math>s\ = \frac{a_{28} + a_{30}}{2}</math>  
 
 
 
<math>a_{28}</math> and <math>a_{30}</math> are both given; the last four digits of their sum is <math>3668</math>, and half of that is <math>1834</math>. Therefore, the answer is <math>834</math>.
 
  
 
== See also ==
 
== See also ==

Revision as of 21:09, 25 April 2008

Problem

A sequence is defined as follows $a_1=a_2=a_3=1,$ and, for all positive integers $n, a_{n+3}=a_{n+2}+a_{n+1}+a_n.$ Given that $a_{28}=6090307, a_{29}=11201821,$ and $a_{30}=20603361,$ find the remainder when $\sum^{28}_{k=1} a_k$ is divided by 1000.

Solution

Define the sum as $s$. Since $a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1}$, the sum will be:

$\begin{align*}s &= a_{28} + \sum^{27}_{k=1} (a_{k+3}-a_{k+2}-a_{k+1}) \

&= a_{28} + \left(\sum^{30}_{k=4} a_{k} - \sum^{29}_{k=3} a_{k}\right) - \left(\sum^{28}_{k=2} a_{k}\right)\ &= a_{28} + (a_{30} - a_{3}) - \left(\sum^{28}_{k=2} a_{k}\right) = a_{28} + a_{30} - a_{3} - (s - a_{1})\ &= -s + a_{28} + a_{30}

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Thus $s = \frac{a_{28} + a_{30}}{2}$, and $a_{28},\,a_{30}$ are both given; the last four digits of their sum is $3668$, and half of that is $1834$. Therefore, the answer is $\boxed{834}$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions