Difference between revisions of "2008 AMC 12A Problems/Problem 10"

(Problem 10)
(Duplicate, AMC 10 box, style, answer choices)
Line 1: Line 1:
 +
{{duplicate|[[2008 AMC 12A Problems|2008 AMC 12A #10]] and [[2008 AMC 10A Problems/Problem 14|2008 AMC 10A #13]]}}
 
==Problem==
 
==Problem==
 
Doug can paint a room in <math>5</math> hours. Dave can paint the same room in <math>7</math> hours. Doug and Dave paint the room together and take a one-hour break for lunch. Let <math>t</math> be the total time, in hours, required for them to complete the job working together, including lunch. Which of the following equations is satisfied by <math>t</math>?
 
Doug can paint a room in <math>5</math> hours. Dave can paint the same room in <math>7</math> hours. Doug and Dave paint the room together and take a one-hour break for lunch. Let <math>t</math> be the total time, in hours, required for them to complete the job working together, including lunch. Which of the following equations is satisfied by <math>t</math>?
  
<math>\textbf{(A)}\ \left( \frac{1}{5}+\frac{1}{7}\right)\left( t+1 \right)=1 \qquad \textbf{(B)}\ \left( \frac{1}{5}+\frac{1}{7}\right)t+1=1 \qquad \textbf{(C)}\left( \frac{1}{5}+\frac{1}{7}\right)t=1
+
<math>\mathrm{(A)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t+1\right)=1\qquad\mathrm{(B)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t+1=1\qquad\mathrm{(C)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t=1\\mathrm{(D)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1\qquad\mathrm{(E)}\ \left(5+7\right)t=1</math>
\
 
 
 
\textbf{(D)}\ \left( \frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1 \qquad \textbf{(E)}\ \left(5+7\right)t=1</math>
 
  
 
==Solution==
 
==Solution==
Doug can paint <math>\frac{1}{5}</math> of a room per hour. Dave can paint <math>\frac{1}{7}</math> of a room in an hour. The time that they spend working together is <math>t-1</math>.
+
Doug can paint <math>\frac{1}{5}</math> of a room per hour, Dave can paint <math>\frac{1}{7}</math> of a room in an hour, and the time they spend working together is <math>t-1</math>.
  
Since rate multiplied by time gives output:
+
Since rate times time gives output, <math>\left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1 \Rightarrow \mathrm{(D)}</math>
<math>\left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1 \Rightarrow D</math>
 
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=A|num-b=9|num-a=11}}
 
{{AMC12 box|year=2008|ab=A|num-b=9|num-a=11}}
 +
{{AMC10 box|year=2008|ab=A|num-b=12|num-a=14}}

Revision as of 00:05, 26 April 2008

The following problem is from both the 2008 AMC 12A #10 and 2008 AMC 10A #13, so both problems redirect to this page.

Problem

Doug can paint a room in $5$ hours. Dave can paint the same room in $7$ hours. Doug and Dave paint the room together and take a one-hour break for lunch. Let $t$ be the total time, in hours, required for them to complete the job working together, including lunch. Which of the following equations is satisfied by $t$?

$\mathrm{(A)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t+1\right)=1\qquad\mathrm{(B)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t+1=1\qquad\mathrm{(C)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t=1\\\mathrm{(D)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1\qquad\mathrm{(E)}\ \left(5+7\right)t=1$

Solution

Doug can paint $\frac{1}{5}$ of a room per hour, Dave can paint $\frac{1}{7}$ of a room in an hour, and the time they spend working together is $t-1$.

Since rate times time gives output, $\left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1 \Rightarrow \mathrm{(D)}$

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions