Difference between revisions of "1994 AIME Problems/Problem 4"

m
(Started solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Find the positive integer <math>n\,</math> for which
 
Find the positive integer <math>n\,</math> for which
<center><math>
+
<cmath>
\lfloor \log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994</math></center>.
+
\lfloor\log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994
 +
</cmath>
 
(For real <math>x\,</math>, <math>\lfloor x\rfloor\,</math> is the greatest integer <math>\le x.\,</math>)
 
(For real <math>x\,</math>, <math>\lfloor x\rfloor\,</math> is the greatest integer <math>\le x.\,</math>)
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Notice that <math>\lfloor\log_2{a}\rfloor</math> is equal to <math>\log_2{2^{x}}</math>, where <math>2^x</math> is the largest power of <math>2</math> less than or equal to <math>a</math>. Using this fact, the equation can be rewritten as
 +
<cmath>
 +
\log_2{1}+\log_2{2}+\log_2{2}+\log_2{4}+\cdots+\log_2{n}=1994
 +
</cmath>
 +
Simplifying the [[logarithm]]s, we get
 +
<cmath>
 +
0+1+1+2+2+2+2+\ldots+2^m\cdot m=1994
 +
</cmath>
 +
{{incomplete|solution}}
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1994|num-b=3|num-a=5}}
 
{{AIME box|year=1994|num-b=3|num-a=5}}

Revision as of 11:54, 26 April 2008

Problem

Find the positive integer $n\,$ for which \[\lfloor\log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994\] (For real $x\,$, $\lfloor x\rfloor\,$ is the greatest integer $\le x.\,$)

Solution

Notice that $\lfloor\log_2{a}\rfloor$ is equal to $\log_2{2^{x}}$, where $2^x$ is the largest power of $2$ less than or equal to $a$. Using this fact, the equation can be rewritten as \[\log_2{1}+\log_2{2}+\log_2{2}+\log_2{4}+\cdots+\log_2{n}=1994\] Simplifying the logarithms, we get \[0+1+1+2+2+2+2+\ldots+2^m\cdot m=1994\] Template:Incomplete

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions