Difference between revisions of "Multinomial Theorem"
(new notation, cleanup, better category) |
I like pie (talk | contribs) m |
||
Line 1: | Line 1: | ||
The '''Multinomial Theorem''' states that | The '''Multinomial Theorem''' states that | ||
− | + | <cmath> | |
− | <cmath>(a_1+a_2+\cdots+a_k)^n=\sum_{\substack{j_1,j_2,\ldots,j_k \\ 0 \leq j_i \leq n \textrm{ for each } i \\ | + | (a_1+a_2+\cdots+a_k)^n=\sum_{\substack{j_1,j_2,\ldots,j_k \\ 0 \leq j_i \leq n \textrm{ for each } i \\ |
− | \textrm{and } j_1 + \ldots + j_k = n}}\binom{n}{j_1; j_2; \ldots ; j_k}a_1^{j_1}a_2^{j_2}\cdots a_k^{j_k}</cmath> | + | \textrm{and } j_1 + \ldots + j_k = n}}\binom{n}{j_1; j_2; \ldots ; j_k}a_1^{j_1}a_2^{j_2}\cdots a_k^{j_k} |
− | + | </cmath> | |
where <math>\binom{n}{j_1; j_2; \ldots ; j_k}</math> is the [[multinomial coefficient]] <math>\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}</math>. | where <math>\binom{n}{j_1; j_2; \ldots ; j_k}</math> is the [[multinomial coefficient]] <math>\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}</math>. | ||
Note that this is a direct generalization of the [[Binomial Theorem]]: when <math>k = 2</math> it simplifies to | Note that this is a direct generalization of the [[Binomial Theorem]]: when <math>k = 2</math> it simplifies to | ||
− | <cmath>(a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \\ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j} | + | <cmath> |
+ | (a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \\ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j} | ||
+ | </cmath> | ||
==Problems== | ==Problems== | ||
===Introductory=== | ===Introductory=== | ||
+ | {{problem}} | ||
+ | |||
===Intermediate=== | ===Intermediate=== | ||
*The [[expression]] | *The [[expression]] | ||
Line 20: | Line 24: | ||
<math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ } 2,015,028</math> | <math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ } 2,015,028</math> | ||
− | + | (Source: [[2006_AMC_12A_Problems/Problem_24|2006 AMC 12A Problem 24]]) | |
===Olympiad=== | ===Olympiad=== | ||
− | + | {{problem}} | |
{{stub}} | {{stub}} | ||
[[Category:Theorems]] | [[Category:Theorems]] | ||
[[Category:Combinatorics]] | [[Category:Combinatorics]] |
Revision as of 18:11, 29 April 2008
The Multinomial Theorem states that where is the multinomial coefficient .
Note that this is a direct generalization of the Binomial Theorem: when it simplifies to
Problems
Introductory
This problem has not been edited in. If you know this problem, please help us out by adding it.
Intermediate
- The expression
is simplified by expanding it and combining like terms. How many terms are in the simplified expression?
(Source: 2006 AMC 12A Problem 24)
Olympiad
This problem has not been edited in. If you know this problem, please help us out by adding it.
This article is a stub. Help us out by expanding it.