Difference between revisions of "2008 USAMO Problems/Problem 6"
I like pie (talk | contribs) (Fixed link) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | (''Sam Vandervelde'') At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form <math>2^k</math> for some positive integer <math>k</math>). | + | (''[[Sam Vandervelde]]'') At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form <math>2^k</math> for some positive integer <math>k</math>). |
__TOC__ | __TOC__ | ||
+ | |||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === |
Revision as of 22:42, 2 May 2008
Problem
(Sam Vandervelde) At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form for some positive integer ).
Contents
[hide]Solution
Solution 1
Solution 2
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
2008 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
- <url>viewtopic.php?t=202908 Discussion on AoPS/MathLinks</url>