|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | Consider the [[quadratic]],
| + | #REDIRECT [[Cauchy-Schwarz Inequality]] |
− | <math>(a_1x+b_1)^2+(a_2x+b_2)^2+...(a_nx+b_n)^2 = 0</math>.
| |
− | Expanding, we find the equation to be of the form <math>Ax^2+Bx+C</math>, where <math>A=\sum_{i=1}^n a_i^2</math>, <math>B=2\sum_{j=1}^n a_jb_j</math>, and <math>C=\sum_{k=1}^n b_k^2.</math>
| |
− | The equation will have a solution when the discriminant is greater than or equal to 0, so <math>B^2-4AC \geq 0</math>. Substituting the above values of A, B, and C leaves us with the '''Cauchy-Schwarz Inequality''', which states that
| |
− | <math>(a_1b_1+a_2b_2+...+a_nb_n)^2 \geq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2)</math>,
| |
− | or, in the more compact [[sigma notation]],
| |
− | <math>\left(\sum a_ib_i\right) \geq \left(\sum a_i^2\right)\left(\sum b_i^2\right)</math>
| |