Difference between revisions of "1987 IMO Problems/Problem 2"
m |
Archimedes1 (talk | contribs) m (→Solution) |
||
Line 16: | Line 16: | ||
<math>\frac{BC\sin A}{2\cos \frac{1}{2}A}=CK\sin NCA+BM\sin NBA</math> | <math>\frac{BC\sin A}{2\cos \frac{1}{2}A}=CK\sin NCA+BM\sin NBA</math> | ||
− | <math>\Leftrightarrow BC\sin \frac{1}{2}A=CK\sin (C\frac{1}{2}A)+BM\sin (C\frac{1}{2}A)</math> | + | <math>\Leftrightarrow BC\sin \frac{1}{2}A=CK\sin (C+ \frac{1}{2}A)+BM\sin (C+ \frac{1}{2}A)</math> |
<math>\Leftrightarrow BC=CK(\sin C\cot\frac{1}{2}A+\cos C)+BM(\sin B\cot\frac{1}{2}A+\cos B)</math> | <math>\Leftrightarrow BC=CK(\sin C\cot\frac{1}{2}A+\cos C)+BM(\sin B\cot\frac{1}{2}A+\cos B)</math> |
Revision as of 22:05, 24 January 2009
Problem
In an acute-angled triangle the interior bisector of the angle intersects at and intersects the circumcircle of again at . From point perpendiculars are drawn to and , the feet of these perpendiculars being and respectively. Prove that the quadrilateral and the triangle have equal areas.
Solution
We are to prove that or equivilently, . Thus, we are to prove that . It is clear that since , the segments and are equal. Thus, we have since cyclic quadrilateral gives . Thus, we are to prove that
From the fact that and that is iscoceles, we find that . So, we have . So we are to prove that
We have ,, , ,, and so we are to prove that
We shall show that this is true: Let the altitude from touch at . Then it is obvious that and and thus .
Thus we have proven that .
See also
1987 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |