Difference between revisions of "2007 AMC 12B Problems/Problem 11"

(New page: The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let x be <A, so then: <B=.5x <C=(1/3)x <D=(1/4)x <A+<B+<C+<D=360 x+.5x+(1/3)x+(1/4)x=360 (2...)
 
Line 1: Line 1:
 +
==Solution==
 +
The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let <math>x</math> be <math>\angle A</math>, so then:
  
The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let x be <A, so then:
+
<math>\angle B=.5x</math>
<B=.5x
+
 
<C=(1/3)x
+
<math>\angle C=(1/3)x</math>
<D=(1/4)x
+
 
<A+<B+<C+<D=360
+
<math>\angle D=(1/4)x</math>
x+.5x+(1/3)x+(1/4)x=360
+
 
(25/12)x=360
+
<math>\angle A+\angle B+\angle C+\angle D=360</math>
x=172.8
+
 
or
+
<math>x+.5x+(1/3)x+(1/4)x=360</math>
x is around 173, choice D.
+
 
 +
<math>(25/12)x=360</math>
 +
 
 +
<math>x=172.8</math>
 +
 
 +
or x is around 173, choice D.
 +
 
 +
==See Also==
 +
{{AMC12 box|year=2007|ab=B|num-b=10|num-a=12}}

Revision as of 01:23, 10 February 2009

Solution

The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let $x$ be $\angle A$, so then:

$\angle B=.5x$

$\angle C=(1/3)x$

$\angle D=(1/4)x$

$\angle A+\angle B+\angle C+\angle D=360$

$x+.5x+(1/3)x+(1/4)x=360$

$(25/12)x=360$

$x=172.8$

or x is around 173, choice D.

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions