Difference between revisions of "2007 AMC 12B Problems/Problem 11"
(New page: The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let x be <A, so then: <B=.5x <C=(1/3)x <D=(1/4)x <A+<B+<C+<D=360 x+.5x+(1/3)x+(1/4)x=360 (2...) |
|||
Line 1: | Line 1: | ||
+ | ==Solution== | ||
+ | The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let <math>x</math> be <math>\angle A</math>, so then: | ||
− | + | <math>\angle B=.5x</math> | |
− | <B=.5x | + | |
− | <C=(1/3)x | + | <math>\angle C=(1/3)x</math> |
− | <D=(1/4)x | + | |
− | <A+ | + | <math>\angle D=(1/4)x</math> |
− | x+.5x+(1/3)x+(1/4)x=360 | + | |
− | (25/12)x=360 | + | <math>\angle A+\angle B+\angle C+\angle D=360</math> |
− | x=172.8 | + | |
− | or | + | <math>x+.5x+(1/3)x+(1/4)x=360</math> |
− | x is around 173, choice D. | + | |
+ | <math>(25/12)x=360</math> | ||
+ | |||
+ | <math>x=172.8</math> | ||
+ | |||
+ | or x is around 173, choice D. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2007|ab=B|num-b=10|num-a=12}} |
Revision as of 01:23, 10 February 2009
Solution
The angles in a quadrilateral add up to 360, regardless of what shape or size the figure takes. Let be , so then:
or x is around 173, choice D.
See Also
2007 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |