Difference between revisions of "2007 AMC 12B Problems/Problem 20"

m (Solution: typo)
Line 16: Line 16:
 
\frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \quad \Longrightarrow \quad 2d^2 &= 9(a-b)</cmath></center>
 
\frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \quad \Longrightarrow \quad 2d^2 &= 9(a-b)</cmath></center>
 
Thus <math>3|d</math>, and we verify that <math>d = 3</math>, <math>a-b = 2 \Longrightarrow a = 3, b = 1</math> will give us a minimum value for <math>a+b+c+d</math>. Then <math>a+b+c+d = 3 + 1 + 9 + 3 = 16\ \mathbf{(D)}</math>.
 
Thus <math>3|d</math>, and we verify that <math>d = 3</math>, <math>a-b = 2 \Longrightarrow a = 3, b = 1</math> will give us a minimum value for <math>a+b+c+d</math>. Then <math>a+b+c+d = 3 + 1 + 9 + 3 = 16\ \mathbf{(D)}</math>.
 
+
==Solution 2==
 +
The key to this solution is that area is invariant under translation. By suitably shifting the plane, the problem is mapped to the lines <math>c,d,(b-a)x+c,(b-a)x+d</math> and <math>c,-d,(b-a)x+c,(b-a)x-d</math>. Now, the area of the parallelogram contained by is the former is equal to the area of a rectangle with sides <math>d-c</math> and <math>\frac{d-c}{b-a}</math>, <math>\frac{(d-c)^2}{b-a}=18</math>, and the area contained by the latter is <math>\frac{(c+d)^2}{b-a}=72</math>. Thus, <math>d=3c</math> and <math>b-a</math> must be even if the former quantity is to equal <math>18</math>. <math>c^2=18(b-a)</math> so <math>c</math> is a multiple of <math>3</math>. Putting this all together, the minimal solution is <math>(a,b,c,d)=(3,1,3,9)</math>
 
==See also==
 
==See also==
 
{{AMC12 box|year=2007|ab=B|num-b=21|num-a=23}}
 
{{AMC12 box|year=2007|ab=B|num-b=21|num-a=23}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 00:41, 25 February 2009

Problem

The parallelogram bounded by the lines $y=ax+c$, $y=ax+d$, $y=bx+c$, and $y=bx+d$ has area $18$. The parallelogram bounded by the lines $y=ax+c$, $y=ax-d$, $y=bx+c$, and $y=bx-d$ has area $72$. Given that $a$, $b$, $c$, and $d$ are positive integers, what is the smallest possible value of $a+b+c+d$?

$\mathrm {(A)} 13\qquad \mathrm {(B)} 14\qquad \mathrm {(C)} 15\qquad \mathrm {(D)} 16\qquad \mathrm {(E)} 17$

Solution

Template:Incomplete Plotting the parallelogram on the coordinate plane, the 4 corners are at $(0,c),(0,d),\left(\frac{d-c}{a-b},\frac{ad-bc}{a-b}\right),\left(\frac{c-d}{a-b},\frac{bc-ad}{a-b}\right)$. Because $72= 4\cdot 18$, we have that $4(c-d)\left(\frac{c-d}{a-b}\right) = (c+d)\left(\frac{c+d}{a-b}\right)$ or that $2(c-d)=c+d$, which gives $c=3d$ (consider a homothety, or dilation, that carries the first parallelogram to the second parallelogram; because the area increases by $4\times$, it follows that the stretch along the diagonal is $2\times$). The area of triangular half of the parallelogram on the right side of the y-axis is given by $9 = \frac{1}{2} (c-d)\left(\frac{d-c}{a-b}\right)$, so substituting $c = 3d$:

\[\frac{1}{2} (c-d)\left(\frac{c-d}{a-b}\right) &= 9 \quad \Longrightarrow \quad 2d^2 &= 9(a-b)\] (Error compiling LaTeX. Unknown error_msg)

Thus $3|d$, and we verify that $d = 3$, $a-b = 2 \Longrightarrow a = 3, b = 1$ will give us a minimum value for $a+b+c+d$. Then $a+b+c+d = 3 + 1 + 9 + 3 = 16\ \mathbf{(D)}$.

Solution 2

The key to this solution is that area is invariant under translation. By suitably shifting the plane, the problem is mapped to the lines $c,d,(b-a)x+c,(b-a)x+d$ and $c,-d,(b-a)x+c,(b-a)x-d$. Now, the area of the parallelogram contained by is the former is equal to the area of a rectangle with sides $d-c$ and $\frac{d-c}{b-a}$, $\frac{(d-c)^2}{b-a}=18$, and the area contained by the latter is $\frac{(c+d)^2}{b-a}=72$. Thus, $d=3c$ and $b-a$ must be even if the former quantity is to equal $18$. $c^2=18(b-a)$ so $c$ is a multiple of $3$. Putting this all together, the minimal solution is $(a,b,c,d)=(3,1,3,9)$

See also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions