Difference between revisions of "2001 AMC 12 Problems/Problem 24"
(New page: == Problem == In <math>\triangle ABC</math>, <math>\angle ABC=45^\circ</math>. Point <math>D</math> is on <math>\overline{BC}</math> so that <math>2\cdot BD=CD</math> and <math>\angle DAB...) |
m (fixed letter) |
||
Line 39: | Line 39: | ||
</asy> | </asy> | ||
− | We start with the observation that <math>\angle | + | We start with the observation that <math>\angle ADB = 180^\circ - 15^\circ - 45^\circ = 120^\circ</math>, and <math>\angle ADC = 15^\circ + 45^\circ = 60^\circ</math>. |
We can draw the height <math>CE</math> from <math>C</math> onto <math>AD</math>. In the triangle <math>CED</math>, we have <math>\frac {ED}{CD} = \cos EDC = \cos 60^\circ = \frac 12</math>. Hence <math>ED = CD/2</math>. | We can draw the height <math>CE</math> from <math>C</math> onto <math>AD</math>. In the triangle <math>CED</math>, we have <math>\frac {ED}{CD} = \cos EDC = \cos 60^\circ = \frac 12</math>. Hence <math>ED = CD/2</math>. |
Revision as of 12:57, 23 March 2009
Problem
In , . Point is on so that and . Find .
Solution
We start with the observation that , and .
We can draw the height from onto . In the triangle , we have . Hence .
By the definition of , we also have , therefore . This means that the triangle is isosceles, and as , we must have .
Then we compute , thus and the triangle is isosceles as well. Hence .
Now we can note that , hence also the triangle is isosceles and we have .
Combining the previous two observations we get that , and as , this means that .
Finally, we get .
See Also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |