Difference between revisions of "Inradius"

(Properties)
m (+ a bit)
Line 1: Line 1:
 
The '''inradius''' of a [[polygon]] is the [[radius]] of its [[incircle]] (assuming an incircle exists). It is commonly denoted <math>r</math>.
 
The '''inradius''' of a [[polygon]] is the [[radius]] of its [[incircle]] (assuming an incircle exists). It is commonly denoted <math>r</math>.
 +
 +
<center><asy>
 +
pathpen = linewidth(0.7);
 +
pair A=(0,0),B=(4,0),C=(1.5,2),I=incenter(A,B,C),F=foot(I,A,B);
 +
D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(CR(D(MP("I",I,SW)),inradius(A,B,C))); D(F--I--foot(I,B,C)--I--foot(I,C,A)); D(rightanglemark(I,F,B,5)); MP("r",(F+I)/2,E);
 +
</asy></center>
  
 
== Properties ==
 
== Properties ==
*If <math>\triangle ABC</math> has inradius <math>r</math> and [[circumradius]] <math>R</math>, then <math>\cos{A}+\cos{B}+\cos{C}=\frac{r+R}{R}</math>.
+
*If <math>\triangle ABC</math> has inradius <math>r</math> and [[semi-perimeter]] <math>s</math>, then the [[area]] of <math>\triangle ABC</math> is <math>rs</math>. This formula holds true for other polygons if the incircle exists.
*If <math>\triangle ABC</math> has inradius <math>r</math> and [[semi-perimeter]] <math>s</math>, then the [[area]] of <math>\triangle ABC</math> is <math>rs</math>.
+
*The inradius satisfies the inequality <math>2r \le R</math>, where <math>R</math> is the [[circumradius]] (see below).
 +
*If <math>\triangle ABC</math> has inradius <math>r</math> and circumradius <math>R</math>, then <math>\cos{A}+\cos{B}+\cos{C}=\frac{r+R}{R}</math>.
 +
 
 +
== Problems ==
 +
*Verify the inequality <math>2r \le R</math>.
 +
*Verify the identity <math>\cos{A}+\cos{B}+\cos{C}=\frac{r+R}{R}</math> (see [[Carnot's Theorem]]).
 +
*[[Special:WhatLinksHere/Inradius]]: [[2007 AIME II Problems/Problem 15]]
 +
 
 +
{{stub}}
 +
 
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Revision as of 19:16, 15 March 2010

The inradius of a polygon is the radius of its incircle (assuming an incircle exists). It is commonly denoted $r$.

[asy] pathpen = linewidth(0.7); pair A=(0,0),B=(4,0),C=(1.5,2),I=incenter(A,B,C),F=foot(I,A,B); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(CR(D(MP("I",I,SW)),inradius(A,B,C))); D(F--I--foot(I,B,C)--I--foot(I,C,A)); D(rightanglemark(I,F,B,5)); MP("r",(F+I)/2,E); [/asy]

Properties

  • If $\triangle ABC$ has inradius $r$ and semi-perimeter $s$, then the area of $\triangle ABC$ is $rs$. This formula holds true for other polygons if the incircle exists.
  • The inradius satisfies the inequality $2r \le R$, where $R$ is the circumradius (see below).
  • If $\triangle ABC$ has inradius $r$ and circumradius $R$, then $\cos{A}+\cos{B}+\cos{C}=\frac{r+R}{R}$.

Problems

This article is a stub. Help us out by expanding it.