# 2007 AIME II Problems/Problem 15

## Problem

Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

## Solution

### Solution 1

First, apply Heron's formula to find that $[ABC] = \sqrt{21 \cdot 8 \cdot 7 \cdot 6} = 84$. The semiperimeter is $21$, so the inradius is $\frac{A}{s} = \frac{84}{21} = 4$.

Now consider the incenter $I$ of $\triangle ABC$. Let the radius of one of the small circles be $r$. Let the centers of the three little circles tangent to the sides of $\triangle ABC$ be $O_A$, $O_B$, and $O_C$. Let the center of the circle tangent to those three circles be $O$. The homothety $\mathcal{H}\left(I, \frac{4-r}{4}\right)$ maps $\triangle ABC$ to $\triangle XYZ$; since $OO_A = OO_B = OO_C = 2r$, $O$ is the circumcenter of $\triangle XYZ$ and $\mathcal{H}$ therefore maps the circumcenter of $\triangle ABC$ to $O$. Thus, $2r = R \cdot \frac{4 - r}{4}$, where $R$ is the circumradius of $\triangle ABC$. Substituting $R = \frac{abc}{4[ABC]} = \frac{65}{8}$, $r = \frac{260}{129}$ and the answer is $\boxed{389}$.

### Solution 2

Consider a 13-14-15 triangle. $A=84.$ [By Heron's Formula or by 5-12-13 and 9-12-15 right triangles.]

The inradius is $r=\frac{A}{s}=\frac{84}{21}=4$, where $s$ is the semiperimeter. Scale the triangle with the inradius by a linear scale factor, $u.$

The circumradius is $R=\frac{abc}{4rs}=\frac{13\cdot 14\cdot 15}{4\cdot 4\cdot 21}=\frac{65}{8},$ where $a,$ $b,$ and $c$ are the side-lengths. Scale the triangle with the circumradius by a linear scale factor, $v$.

Cut and combine the triangles, as shown. Then solve for $4u$: $\frac{65}{8}v=8u$ $v=\frac{64}{65}u$ $u+v=1$ $u+\frac{64}{65}u=1$ $\frac{129}{65}u=1$ $4u=\frac{260}{129}$

The solution is $260+129=\boxed{389}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 