Difference between revisions of "Proofs without words"
(start, will add more later (1 per day?)) |
(+2 more) |
||
Line 27: | Line 27: | ||
htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); | htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); | ||
− | </asy> | + | </asy><br> |
The sum of the first <math>n</math> odd natural numbers is <math>n^2</math>.<br><br> | The sum of the first <math>n</math> odd natural numbers is <math>n^2</math>.<br><br> | ||
Line 65: | Line 65: | ||
htick(shiftR+(-r,-n),shiftR+(n+r-1,-n),(0,0.15)); label("$n$",shiftR+((n-1)/2,-n),S,fontsize(10)); | htick(shiftR+(-r,-n),shiftR+(n+r-1,-n),(0,0.15)); label("$n$",shiftR+((n-1)/2,-n),S,fontsize(10)); | ||
htick(shiftR+(n-r,-n),shiftR+(n+r,-n),(0,0.15)); label("$1$",shiftR+(n,-n),S,fontsize(10)); | htick(shiftR+(n-r,-n),shiftR+(n+r,-n),(0,0.15)); label("$1$",shiftR+(n,-n),S,fontsize(10)); | ||
− | </asy> | + | </asy><br> |
The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | ||
</center> | </center> | ||
+ | |||
+ | <center><asy> defaultpen(linewidth(0.7)); unitsize(15); | ||
+ | int n = 10; real h = 6; pen colors[] = {red,green,blue}; | ||
+ | |||
+ | void drawEquilaterals(pair A, real s){ | ||
+ | filldraw(A--A+s*expi(2*pi/3)--A+(-s,0)--cycle,colors[0]); | ||
+ | filldraw(A--A+s*expi(2*pi/3)--A+s*expi(1*pi/3)--cycle,colors[1]); | ||
+ | filldraw(A--A+s*expi(1*pi/3)--A+(s,0)--cycle,colors[2]); | ||
+ | } | ||
+ | |||
+ | for(int i = 0; i < n; ++i) | ||
+ | drawEquilaterals( (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); | ||
+ | </asy><br> | ||
+ | |||
+ | The infinite [[geometric series]] <math>\frac 14 + \frac {1}{4^2} + \frac {1}{4^3} + \cdots = \frac 13</math>.<br><br> | ||
+ | </center> | ||
+ | |||
+ | <center><asy> unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | real r = 0.3, row1 = 3.5, row2 = 0, row3 = -3.5; | ||
+ | void necklace(pair k, pen colors[]){ | ||
+ | draw(shift(k)*unitcircle); | ||
+ | for(int i = 0; i < colors.length; ++i){ | ||
+ | pair p = k+expi(pi/2+2*pi*i/colors.length); | ||
+ | fill(Circle(p,r),colors[i]); | ||
+ | draw(Circle(p,r)); | ||
+ | } | ||
+ | } | ||
+ | void htick(pair A, pair B,pair ticklength = (0.15,0)){ | ||
+ | draw(A--B); | ||
+ | draw(A-ticklength--A+ticklength); | ||
+ | draw(B-ticklength--B+ticklength); | ||
+ | } | ||
+ | |||
+ | /* draw necklaces */ | ||
+ | pen BEADS1[] = {red,red,red},BEADS2[] = {blue,blue,blue},BEADS3[] = {red,red,blue},BEADS4[] = {blue,red,red},BEADS5[] = {red,blue,red},BEADS6[] = {blue,blue,red},BEADS7[] = {red,blue,blue},BEADS8[] = {blue,red,blue}; | ||
+ | |||
+ | necklace((-10,(row2+row3)/2),BEADS1);necklace((-7.5,(row2+row3)/2),BEADS2); | ||
+ | necklace((-2.5,row2),BEADS3);necklace((0,row2),BEADS4);necklace((2.5,row2),BEADS5); | ||
+ | necklace((-2.5,row3),BEADS6);necklace((0,row3),BEADS7);necklace((2.5,row3),BEADS8); | ||
+ | |||
+ | /* box them and label */ | ||
+ | draw((-4,row2-1.3)--(4,row2-1.3)--(4,row2+1.6)--(-4,row2+1.6)--cycle,linewidth(0.9)+linetype("4 2")); | ||
+ | draw((-4,row3-1.3)--(4,row3-1.3)--(4,row3+1.6)--(-4,row3+1.6)--cycle,linewidth(0.9)+linetype("4 2")); | ||
+ | htick((-4,row2+2),(4,row2+2),(0,0.15)); label("$p$",(0,row2+2),N,fontsize(10)); | ||
+ | htick((-11.5,(row2+row3)/2+2),(-6,(row2+row3)/2+2),(0,0.15)); label("$a$",(-17.5/2,(row2+row3)/2+2),N,fontsize(10)); | ||
+ | </asy><br> | ||
+ | |||
+ | [[Fermat's Little Theorem]]: <math>a^p \equiv a \pmod{p}</math> for <math>\text{gcd}\,(a,p) = 1</math> (above <math>a=2,p=3</math>).<br><br> | ||
+ | </center> | ||
+ | |||
[[Category:Proofs]] | [[Category:Proofs]] |
Revision as of 13:13, 18 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The infinite geometric series .
Fermat's Little Theorem: for (above ).