Difference between revisions of "Proofs without words"
(→Miscellaneous: enough for now) |
(+ couple more) |
||
Line 1: | Line 1: | ||
The following demonstrate [[proof]]s of various identities and theorems using pictures, inspired from [http://usamts.org/Gallery/G_Gallery.php this gallery]. | The following demonstrate [[proof]]s of various identities and theorems using pictures, inspired from [http://usamts.org/Gallery/G_Gallery.php this gallery]. | ||
+ | <!-- | ||
+ | (1+2+ .. n)^2 = 1^3 + .. + n^3 | ||
+ | TWO WAYS: show that n^3 = odd number sum | ||
+ | : USAMTS method | ||
+ | |||
+ | pentagonal = 3 * triangular + n | ||
+ | |||
+ | fibonacci f_1^2 + .. f_n^2 = f_{n+1}f_{n} | ||
+ | |||
+ | hockey stick? | ||
+ | |||
+ | |||
+ | 1/2 + 1/4 + ... = 1 | ||
+ | |||
+ | 1 + r + r^2 + ... = 1/(1-r) | ||
+ | |||
+ | |||
+ | geometry: | ||
+ | Pythagorean Theorem (multiple ways - 5?) | ||
+ | |||
+ | shortest line | ||
+ | |||
+ | smallest triangle in angle | ||
+ | |||
+ | equilateral triangle in three lines | ||
+ | |||
+ | Fermat point problem | ||
+ | |||
+ | Fagnano problem | ||
+ | |||
+ | parallelogram = cross-product | ||
+ | |||
+ | trapezoid ABCD with AC perp BD <==> (AB + CD)^2 = AC^2 + BD^2 | ||
+ | |||
+ | regular heptagon identity? | ||
+ | |||
+ | dodecagon = 3R^2 | ||
+ | |||
+ | A = rs | ||
+ | |||
+ | Law of Cosines | ||
+ | |||
+ | Law of Sines | ||
+ | |||
+ | radical axes/homotheties? | ||
+ | |||
+ | |||
+ | misc. | ||
+ | 3D QM-GM | ||
+ | |||
+ | Jensen's inequality (draw curve, multiple points) | ||
+ | |||
+ | Minkowski's inequality | ||
+ | |||
+ | rt(a^2 - ab + b^2) rt(b^2 - bc + c^2) < rt(a^2 + ac + c^2) | ||
+ | |||
+ | integration by parts | ||
+ | |||
+ | Homeomorphism between S^1 - (1,0) to R | ||
+ | cardinality of interval with R | ||
+ | |||
+ | --> | ||
== Summations == | == Summations == | ||
<center><asy>unitsize(15); defaultpen(linewidth(0.7)); | <center><asy>unitsize(15); defaultpen(linewidth(0.7)); | ||
Line 69: | Line 131: | ||
The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | ||
+ | </center> | ||
+ | |||
+ | <center><asy>unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | int n = 6; real r = 0.35, h = 3/4; /* radius size and horizontal spacing */ | ||
+ | pair shiftR = (h*(n+1)+r, 0); | ||
+ | |||
+ | pen colors(int i){ /* shading */ | ||
+ | if(i == n) return red; | ||
+ | return rgb(5/n,0.4+5/(2n),1-5/n); | ||
+ | } | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ | ||
+ | draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); | ||
+ | } | ||
+ | void makeshiftarrow(pair A, real dir, real arrowlength = r){ /* Arrow option resizes */ | ||
+ | fill(A--A+arrowlength*expi(dir+pi/6)--A+arrowlength*expi(dir-pi/6)--cycle); | ||
+ | } | ||
+ | pair getCenter(int i, int j){ return ((2*j-i)*h,-i);} | ||
+ | |||
+ | /* triangle */ | ||
+ | for(int i = 0; i < n+1; ++i){ | ||
+ | draw((-i*h,-i)--(i*h,-i)); /* horizontal lining */ | ||
+ | for(int j = 0; j <= i; ++j) | ||
+ | filldraw(circle(getCenter(i,j),r), colors(i)); | ||
+ | } | ||
+ | |||
+ | /* fill in circle in row 4, column 3 */ | ||
+ | filldraw(circle(getCenter(3,2),r),blue); | ||
+ | draw(getCenter(n,2)-- getCenter(3,2)-- getCenter(n,n+2-3)); | ||
+ | makeshiftarrow(getCenter(n,2),pi/4,0.5); makeshiftarrow(getCenter(n,n+2-3),3*pi/4,0.5); | ||
+ | |||
+ | htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),E,fontsize(10)); | ||
+ | </asy><br> | ||
+ | |||
+ | The sum of the first <math>n</math> positive integers is <math>{n+1 \choose 2}</math>.{{ref|1}}<br><br> | ||
</center> | </center> | ||
== Geometric series == | == Geometric series == | ||
− | + | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); | |
+ | int n = 10; /* # of iterations */ | ||
+ | real s = 6; /* square size */ | ||
+ | pair shiftR = (s+2,0); pen sm = fontsize(10); | ||
+ | void fillrect(pair A, pair B = (0,0), pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } | ||
+ | void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | for(int i = 0; i < 2; ++i) /* left */ | ||
+ | fillrect((s/2^(ceil(i/2)),s/2^(floor(i/2)))); | ||
+ | for(int i = 0; i < n; ++i) /* right */ | ||
+ | fillrect(shiftR,shiftR + (s/2^(ceil(i/2)),s/2^(floor(i/2)))); | ||
+ | label("$\frac 12$",(s*3/4,s/2),sm); label("$\cdots$",(s*1/4,s/2),sm); | ||
+ | label("$\frac 12$",shiftR+(s*3/4,s/2),sm); label("$\cdots$",shiftR+(s*1/4,s/2),sm); | ||
+ | label("$\frac 14$",shiftR+(s*1/4,s*3/4),sm); label("$\frac 18$",shiftR+(s*3/8,s/4),sm); | ||
+ | htick((0,-1), (s,-1)); htick(shiftR + (0,-1), shiftR + (s,-1)); | ||
+ | label("$1$",(s/2,-1),S,sm); label("$1$",shiftR+(s/2,-1),S,sm); | ||
+ | </asy> | ||
The infinite [[geometric series]] <math>\frac 12 + \frac {1}{2^2} + \frac {1}{2^3} + \cdots = 1</math>.<br><br> | The infinite [[geometric series]] <math>\frac 12 + \frac {1}{2^2} + \frac {1}{2^3} + \cdots = 1</math>.<br><br> | ||
− | </center | + | </center> |
<center><asy> defaultpen(linewidth(0.7)); unitsize(15); | <center><asy> defaultpen(linewidth(0.7)); unitsize(15); | ||
Line 100: | Line 212: | ||
<center><asy> defaultpen(linewidth(0.7)); unitsize(15); | <center><asy> defaultpen(linewidth(0.7)); unitsize(15); | ||
int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; | int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; | ||
+ | pair shiftR = (h+3,0); | ||
void drawEquilaterals(pair A, real s){ | void drawEquilaterals(pair A, real s){ | ||
Line 108: | Line 221: | ||
for(int i = 0; i < n; ++i) | for(int i = 0; i < n; ++i) | ||
− | drawEquilaterals( (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); | + | drawEquilaterals(shiftR + (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); |
+ | drawEquilaterals((0,0), h/3^.5); draw((-h/3^.5,0)--(h/3^.5,0)--(0,h)--cycle); label("$\vdots$",(0,3/4*h)); | ||
</asy><br> | </asy><br> | ||
Line 187: | Line 301: | ||
label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | ||
</asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | </asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | ||
− | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].<br><br> | + | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref|2}}<br><br> |
</center> | </center> | ||
Line 223: | Line 337: | ||
</center> | </center> | ||
+ | == References == | ||
+ | #{{note|1}} MathOverflow | ||
+ | #{{note|2}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | ||
[[Category:Proofs]] | [[Category:Proofs]] |
Revision as of 22:16, 20 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
Geometry
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[2]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.