Difference between revisions of "Proofs without words"
(+ couple more) |
(a couple more) |
||
Line 11: | Line 11: | ||
hockey stick? | hockey stick? | ||
− | |||
− | |||
− | |||
1 + r + r^2 + ... = 1/(1-r) | 1 + r + r^2 + ... = 1/(1-r) | ||
− | |||
geometry: | geometry: | ||
Line 166: | Line 162: | ||
The sum of the first <math>n</math> positive integers is <math>{n+1 \choose 2}</math>.{{ref|1}}<br><br> | The sum of the first <math>n</math> positive integers is <math>{n+1 \choose 2}</math>.{{ref|1}}<br><br> | ||
</center> | </center> | ||
+ | |||
+ | <!--<center><asy>defaultpen(linewidth(0.7)); unitsize(15); | ||
+ | |||
+ | </asy><br> | ||
+ | |||
+ | [[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. | ||
+ | </center>--> | ||
== Geometric series == | == Geometric series == | ||
Line 247: | Line 250: | ||
Another proof of the identity <math>\frac 14 + \frac {1}{4^2} + \frac {1}{4^3} + \cdots = \frac 13</math>. <br><br> | Another proof of the identity <math>\frac 14 + \frac {1}{4^2} + \frac {1}{4^3} + \cdots = \frac 13</math>. <br><br> | ||
</center> | </center> | ||
+ | |||
+ | <center><asy> unitsize(15); defaultpen(linewidth(1)); pen sm = fontsize(10); | ||
+ | real r = 0.7, h = 4.5, n = 10, xsum = 0; | ||
+ | void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | filldraw(xscale(h)*yscale(h)*unitsquare,rgb(0.9,1,0.9)); draw((0,0)--(h/(1-r),0)--(0,h)); | ||
+ | for(int i = 0; i < n; ++i){ | ||
+ | xsum += r^i; | ||
+ | draw((h*xsum,0)--(h*xsum,h*(1-(1-r)*xsum))); | ||
+ | htick((h*(xsum-r^i),-1),(h*xsum,-1)); | ||
+ | if(i < 6) | ||
+ | label("$r^"+(string) i+"$",(h*(xsum-r^i/2),-1),S,sm); | ||
+ | else if(i == 8) | ||
+ | label("$\cdots$",(h*(xsum-r^i/2),-1.2),S,sm); | ||
+ | } | ||
+ | |||
+ | htick((-1,0),(-1,h),(.15,0)); htick((0,h+1),(h,h+1)); htick((h+1,h),(h+1,h*r),(.15,0)); | ||
+ | label("$1$",(-1,h/2),W,sm); label("$1$",(h/2,h+1),N,sm); label("$1-r$",(h+1,h*(1+r)/2),E,sm); | ||
+ | </asy><br><br> | ||
+ | |||
+ | The infinite [[geometric series]] <math>\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}</math>.<br><br></center> | ||
+ | |||
+ | <center><asy> unitsize(15); defaultpen(linewidth(1)); pen sm = fontsize(10); | ||
+ | real r = 0.6, h = 2, n = 5, xsum = 0; | ||
+ | void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | draw((0,h*r/(1-r))--(0,0)--(h*n,0)); | ||
+ | for(int i = 1; i < n+1; ++i){ | ||
+ | draw((h*i,0)--(h*i,h*(r/(1-r)-xsum))--(h*(i-1),h*(r/(1-r)-xsum))); | ||
+ | htick((h*i,-1),(h*(i-1),-1)); | ||
+ | if(i < 6) | ||
+ | label("$1$",(h*(i-1/2),-1),S,sm); | ||
+ | else if(i == 8) | ||
+ | label("$\cdots$",(h*(xsum-r^i/2),-1.2),S,sm); | ||
+ | xsum += r^i; | ||
+ | } | ||
+ | </asy><br><br> | ||
+ | The [[arithmetic-geometric series]] <math>\sum_{n=0}^{\infty} nr^n</math>, also known as Gabriel's staircase.{{ref|2}}<br><br></center> | ||
+ | |||
+ | <center>[[#toc|Back to Top]]</center> | ||
== Geometry == | == Geometry == | ||
+ | <center><asy> | ||
+ | pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | ||
+ | path xaxis = (-3,0)--(3,0); pair A = (-2,2), B = (1,1.5), B3 = (-1.5,0), B2 = (B.x,-B.y), C2 = IP(xaxis, A--B2); | ||
+ | |||
+ | D(xaxis,Arrows(8)); D(D(A)--D(C2)--D(B)); D(D(B2)--C2,dashed+linewidth(0.7)); | ||
+ | D(A--D(B3)--B,dotted+linewidth(0.7)); D(B3--B2,dotted); | ||
+ | MP("(a,b)",A,W); MP("(c,d)",B,E); MP("(c,-d)",B2,E); | ||
+ | </asy><br> | ||
+ | |||
+ | The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> | ||
+ | |||
+ | <center>[[#toc|Back to Top]]</center> | ||
== Miscellaneous == | == Miscellaneous == | ||
Line 336: | Line 391: | ||
[[Fermat's Little Theorem]]: <math>a^p \equiv a \pmod{p}</math> for <math>\text{gcd}\,(a,p) = 1</math> (above <math>a=2,p=3</math>).<br><br> | [[Fermat's Little Theorem]]: <math>a^p \equiv a \pmod{p}</math> for <math>\text{gcd}\,(a,p) = 1</math> (above <math>a=2,p=3</math>).<br><br> | ||
</center> | </center> | ||
+ | |||
+ | <center>[[#toc|Back to Top]]</center> | ||
== References == | == References == |
Revision as of 22:55, 22 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
The smallest distance necessary to travel between , the x-axis, and then for is given by .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[2]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.