Difference between revisions of "Proofs without words"
(a couple more) |
(temporary save) |
||
Line 7: | Line 7: | ||
pentagonal = 3 * triangular + n | pentagonal = 3 * triangular + n | ||
− | |||
− | |||
hockey stick? | hockey stick? | ||
− | |||
− | |||
geometry: | geometry: | ||
Pythagorean Theorem (multiple ways - 5?) | Pythagorean Theorem (multiple ways - 5?) | ||
− | |||
− | |||
smallest triangle in angle | smallest triangle in angle | ||
Line 169: | Line 163: | ||
[[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. | [[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. | ||
</center>--> | </center>--> | ||
+ | |||
+ | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); | ||
+ | int n = 5, fib = 1, fib2 = 1, xsum = 1, ysum = 0; real h = 0.15; | ||
+ | void fillsq(pair A = (0,0), real s, pen p = invisible, pen l = linewidth(1)){ filldraw(shift(A)*xscale(s)*yscale(s)*unitsquare, p, l); } | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | for(int i = 0; i < n; ++i) { | ||
+ | fillsq((0,h*ysum),h*fib2,rgb(0.9,1,0.9)); | ||
+ | fillsq((h*xsum,0),h*fib,rgb(1,0.9,0.9)); | ||
+ | if(i == n-1){ | ||
+ | label("$F_{n}^2$",h*(xsum+fib/2,fib/2),sm); | ||
+ | label("$F_{n-1}^2$",h*(fib2/2,ysum+fib2/2),sm); | ||
+ | } | ||
+ | else if(i == n-2){ | ||
+ | label("$F_{n-2}^2$",h*(xsum+fib/2,fib/2),sm); | ||
+ | label("$F_{n-3}^2$",h*(fib2/2,ysum+fib2/2),sm); | ||
+ | } | ||
+ | fib = fib + fib2; fib2 = fib - fib2; | ||
+ | xsum = fib; | ||
+ | ysum = fib2; | ||
+ | fib = fib + fib2; fib2 = fib - fib2; | ||
+ | } | ||
+ | htick(h*(xsum,0)+(1,0),h*(xsum,ysum)+(1,0)); label("$F_n$",h*(xsum,ysum/2)+(1,0), E, sm); | ||
+ | htick(h*(0,ysum)+(0,1),h*(xsum-fib+fib2,ysum)+(0,1),(0,0.15)); label("$F_{n-1}$",h*((xsum-fib+fib2)/2,ysum)+(0,1), N, sm); | ||
+ | htick(h*(xsum,ysum)+(0,1),h*(xsum-fib+fib2,ysum)+(0,1),(0,0.15)); label("$F_{n}$",h*((2*xsum-fib+fib2)/2,ysum)+(0,1), N, sm); | ||
+ | </asy><br> | ||
+ | |||
+ | The identity <math>F_1^2 + F_2^2 + \cdots + F_n^2 = F_{n} \cdot F_{n+1}</math>, where <math>F_i</math> is the <math>i</math>th [[Fibonacci number]].<br><br></center> | ||
+ | |||
+ | <center>[[#toc|Back to Top]]</center> | ||
== Geometric series == | == Geometric series == | ||
Line 273: | Line 297: | ||
<center><asy> unitsize(15); defaultpen(linewidth(1)); pen sm = fontsize(10); | <center><asy> unitsize(15); defaultpen(linewidth(1)); pen sm = fontsize(10); | ||
− | real r = 0. | + | real r = 0.55, h = 2.5, n = 7, xsum = 0; pair shiftD = -(0,h*r/(1-r)+2.5); |
void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
draw((0,h*r/(1-r))--(0,0)--(h*n,0)); | draw((0,h*r/(1-r))--(0,0)--(h*n,0)); | ||
for(int i = 1; i < n+1; ++i){ | for(int i = 1; i < n+1; ++i){ | ||
− | draw((h*i, | + | draw((h*i,h*(r/(1-r)-xsum-r^(i)))--(h*i,h*(r/(1-r)-xsum))--(0,h*(r/(1-r)-xsum))); |
+ | if(i < 4) | ||
+ | label("$r^"+(string) i+"$", (0,h*(r/(1-r)-xsum-r^(i)/2)), W, sm); | ||
htick((h*i,-1),(h*(i-1),-1)); | htick((h*i,-1),(h*(i-1),-1)); | ||
− | if(i < | + | if(i < n) |
label("$1$",(h*(i-1/2),-1),S,sm); | label("$1$",(h*(i-1/2),-1),S,sm); | ||
− | else if(i == | + | else if(i == n) |
− | label("$\cdots$",(h*(xsum-r^i/2),-1.2),S,sm); | + | label("$\cdots$",(h*(i-1/2),-1.2),S,sm); |
+ | xsum += r^i; | ||
+ | } | ||
+ | draw((0,h*r/(1-r))+shiftD--shiftD--(h*n,0)+shiftD); | ||
+ | xsum = 0; | ||
+ | for(int i = 1; i < n+1; ++i){ | ||
+ | draw(shiftD+(h*i,0)--shiftD+(h*i,h*(r/(1-r)-xsum))--shiftD+(h*(i-1),h*(r/(1-r)-xsum))); | ||
+ | if(i < 4) | ||
+ | label("$r^"+(string) i+"$", shiftD+(0,h*(r/(1-r)-xsum-r^(i)/2)), W, sm); | ||
+ | htick(shiftD+(h*i,-1),shiftD+(h*(i-1),-1)); | ||
+ | if(i < n) | ||
+ | label("$1$",shiftD+(h*(i-1/2),-1),S,sm); | ||
+ | else if(i == n) | ||
+ | label("$\cdots$",shiftD+(h*(i-1/2),-1.2),S,sm); | ||
xsum += r^i; | xsum += r^i; | ||
} | } | ||
Line 356: | Line 395: | ||
label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | ||
</asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | </asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | ||
− | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref| | + | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref|3}}<br><br> |
</center> | </center> | ||
Line 396: | Line 435: | ||
== References == | == References == | ||
#{{note|1}} MathOverflow | #{{note|1}} MathOverflow | ||
− | #{{note|2}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | + | #{{note|2}} Wolfram MathWorld |
+ | #{{note|3}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | ||
[[Category:Proofs]] | [[Category:Proofs]] |
Revision as of 14:44, 23 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
The identity , where is the th Fibonacci number.
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
The smallest distance necessary to travel between , the x-axis, and then for is given by .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[3]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.