Difference between revisions of "Proofs without words"
(more) |
(three more) |
||
Line 57: | Line 57: | ||
int n = 6; pair shiftR = ((n+2),0); real r = 0.3; | int n = 6; pair shiftR = ((n+2),0); real r = 0.3; | ||
pen colors(int i){ return rgb(i/n,0.4+i/(2n),1-i/n); } /* shading */ | pen colors(int i){ return rgb(i/n,0.4+i/(2n),1-i/n); } /* shading */ | ||
− | void htick(pair A, pair B,pair ticklength = (0.15,0)){ | + | void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } |
− | |||
− | |||
− | |||
− | } | ||
/* triangle */ | /* triangle */ | ||
Line 157: | Line 153: | ||
</center> | </center> | ||
− | <center> | + | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen heavy = linewidth(2); |
+ | int n2 = 4, n = floor(n2*(n2+1)/2); real h = 0.6; pair shiftR1 = (n*h+1,0), shiftR2 = shiftR1 + (n*h+1,0); /* global configurable variables */ | ||
− | </asy><br> | + | int lvl(int i){ return ceil(((8*i+9)^.5-1)/2); } |
+ | pen colors(int i){ return rgb(0.2+lvl(i)/6,0.3+lvl(i)/7,1-lvl(i)/6); } /* shading */ | ||
+ | void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | /* gradient triangle */ | ||
+ | for(int i = 0; i < n; ++i){ | ||
+ | for(int j = 0; j < 2*i+1; ++j){ | ||
+ | filldraw(shift(shiftR1)*xscale(h)*yscale(h)*shift((j-i,-i))*unitsquare,colors(i)); | ||
+ | if(j % lvl(i) == 0 && j != lvl(i)^2) | ||
+ | draw(shift(shiftR1)*xscale(h)*yscale(h)*shift((j-i,-i))*((0,0)--(0,1)--(1,1)), heavy); | ||
+ | if(j == 2*i) /* right border */ | ||
+ | draw(shift(shiftR1)*xscale(h)*yscale(h)*shift((j-i,-i))*((1,0)--(1,1)--(0,1)), heavy); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | for(int i = 0; i < n2; ++i) | ||
+ | draw(shift(shiftR1)*xscale(h)*yscale(h)*shift((-i*(i+1)/2,-i*(i+1)/2))*((0,1)--(2*i*(i+1)/2+1,1)), heavy); | ||
+ | draw(shift(shiftR1)*xscale(h)*yscale(h)*shift((-n2*(n2+1)/2,-n2*(n2+1)/2))*((1,1)--(2*n2*(n2+1)/2,1)), heavy); | ||
+ | |||
+ | /* gradient square */ | ||
+ | for(int i = 0; i < n; ++i) | ||
+ | for(int j = 0; j < n; ++j) | ||
+ | filldraw(shift(shiftR2)*xscale(h)*yscale(h)*shift((j,-i))*unitsquare,colors((i>j)?i:j)); | ||
+ | |||
+ | /* n nxn squares */ | ||
+ | for(int i = 0; i < n2; ++i){ | ||
+ | filldraw(xscale(h)*yscale(h)*shift((-i,-(i+1)*(i+2)/2+1))*xscale(i+1)*yscale(i+1)*unitsquare, colors(floor(i*(i+1)/2)), heavy); | ||
+ | } | ||
+ | </asy><br> | ||
[[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and consequently that <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. <br><br> | [[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and consequently that <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. <br><br> | ||
Line 353: | Line 378: | ||
<center><asy> | <center><asy> | ||
pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | ||
− | path xaxis = (-3,0)--(3,0); pair A = (-2,2), B = (1,1.5), B3 = (-1.5,0), B2 = (B.x,-B.y), C2 = IP(xaxis, A--B2); | + | path xaxis = (-3,0)--(3,0); pair A = (-2,2), B = (1.5,1.5), B3 = (-1.5,0), B2 = (B.x,-B.y), C2 = IP(xaxis, A--B2); |
D(xaxis,Arrows(8)); D(D(A)--D(C2)--D(B)); D(D(B2)--C2,dashed+linewidth(0.7)); | D(xaxis,Arrows(8)); D(D(A)--D(C2)--D(B)); D(D(B2)--C2,dashed+linewidth(0.7)); | ||
Line 361: | Line 386: | ||
The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> | The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> | ||
+ | |||
+ | |||
+ | <center><asy> | ||
+ | defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); real a = 3/1.2, b = 4/1.2, c = (a^2 + b^2)^.5, rot1 = acos(a/c); pair shiftR = (a+b+c,0); | ||
+ | path top = (0,c)--a*expi(rot1)+(0,c)--(c,c), sq1=rotate(rot1*180/pi)*xscale(a)*yscale(a)*unitsquare, sq2=shift(c,0)*rotate(rot1*180/pi)*xscale(b)*yscale(b)*unitsquare; | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | { /* first picture */ | ||
+ | filldraw((0,0)--(c,0)--a*expi(rot1)--cycle, rgb(1,0.85,0.7)); | ||
+ | fill(sq1, rgb(0.95,1,0.95)); | ||
+ | fill(sq2, rgb(0.95,1,0.95)); | ||
+ | filldraw(rotate(270)*xscale(c)*yscale(c)*unitsquare, rgb(0.96,1,0.96)); | ||
+ | filldraw((0,0)--top--(c,0)--a*expi(rot1)--cycle, rgb(0.5,0.9,0.5)); | ||
+ | draw(sq1 ^^ sq2); draw(a*expi(rot1+pi/2)--top ^^ a*expi(rot1)--a*expi(rot1)+(0,c)); | ||
+ | |||
+ | label("$a$",a/2*expi(rot1),NW,sm); label("$b$",a/2*expi(rot1)+(c/2,0),NE,sm); label("$c$",(c/2,0),S,sm); | ||
+ | } | ||
+ | |||
+ | { /* second picture */ | ||
+ | fill(shift(shiftR)*sq1, rgb(0.95,1,0.95)); | ||
+ | fill(shift(shiftR)*sq2, rgb(0.95,1,0.95)); | ||
+ | filldraw(shift(shiftR)*rotate(270)*xscale(c)*yscale(c)*unitsquare, rgb(0.96,1,0.96)); | ||
+ | filldraw(shift(shiftR+(0,-c))*((0,0)--top--(c,0)--a*expi(rot1)--cycle), rgb(0.5,0.9,0.5)); | ||
+ | filldraw(shift(shiftR+(0,-c))*((0,0)--(c,0)--a*expi(rot1)--cycle), rgb(1,0.85,0.7)); | ||
+ | draw(shift(shiftR)*((0,0)--(c,0) ^^ sq1 ^^ sq2 ^^ a*expi(rot1+pi/2)--top ^^ a*expi(rot1)--a*expi(rot1)+(0,c))); | ||
+ | |||
+ | label("$a$",shiftR+a/2*expi(rot1),NW,sm); label("$b$",shiftR+a/2*expi(rot1)+(c/2,0),NE,sm); label("$c$",shiftR+(c/2,0),S,sm); | ||
+ | } | ||
+ | </asy><br> | ||
+ | |||
+ | Another proof of the [[Pythagorean Theorem]] ([http://usamts.org/About/U_Gallery.php animated version]).<br><br></center> | ||
+ | |||
+ | <center><asy>defaultpen(linewidth(1)); unitsize(15); pen dotted = linetype("2 4"), sm = fontsize(10); real r = 2; | ||
+ | pair A = r*(0,0), B = (r*18/5,A.y), C = r*(16/5,12/5), D = (r*9/5,C.y); | ||
+ | pair refl(pair a, pair b = (C+B)/2) { return a+2*(b-a); } | ||
+ | void makeshiftarrow(pair a, real dir, real arrowlength = r){ /* Arrow option resizes */ | ||
+ | fill(a--a+arrowlength*expi(dir+pi/8)--a+arrowlength*expi(dir-pi/8)--cycle); | ||
+ | } | ||
+ | |||
+ | draw(A--B--C--D--cycle); draw(A--C^^B--D); draw(refl(A)--C--B--refl(D)--cycle ^^ C--refl(D), dotted); draw(rightanglemark(A,C,refl(D),15)^^rightanglemark(A,IP(A--C,B--D),B,15), linewidth(0.7)); | ||
+ | label("$A$",A,S,sm);label("$B$",B,S,sm);label("$C$",C,N,sm);label("$D$",D,N,sm);label("$A'$",refl(A),N,sm);label("$D'$",refl(D),S,sm); | ||
+ | |||
+ | /* arrow */ | ||
+ | draw(arc((B+C)/2,C.y,240,300),linewidth(0.7)); makeshiftarrow((B+C)/2+C.y*expi(pi*300/180),210*pi/180,r/4); | ||
+ | </asy><br> | ||
+ | |||
+ | In trapezoid <math>ABCD</math> with <math>\overline{AB} \parallel \overline{CD}</math>, then <math>\overline{AC} \perp \overline{BD} \Longleftrightarrow AC^2 + BD^2 = (AB + CD)^2</math>.<br><br></center> | ||
<center>[[#toc|Back to Top]]</center> | <center>[[#toc|Back to Top]]</center> |
Revision as of 18:06, 27 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Nichomauss' Theorem: can be written as the sum of consecutive integers, and consequently that .
Another proof of the identity .
The identity , where is the th Fibonacci number.
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
First of several proofs of the Pythagorean Theorem: .[3]
The smallest distance necessary to travel between , the x-axis, and then for is given by .
Another proof of the Pythagorean Theorem (animated version).
In trapezoid with , then .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[5]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ Attributed to the Chinese text Zhou Bi Suan Jing.
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.