Difference between revisions of "Proofs without words"
(three more) |
m (pythagorean fixes) |
||
Line 22: | Line 22: | ||
parallelogram = cross-product | parallelogram = cross-product | ||
− | |||
− | |||
regular heptagon identity? | regular heptagon identity? | ||
Line 131: | Line 129: | ||
} | } | ||
void makeshiftarrow(pair A, real dir, real arrowlength = r){ /* Arrow option resizes */ | void makeshiftarrow(pair A, real dir, real arrowlength = r){ /* Arrow option resizes */ | ||
− | fill(A--A+arrowlength*expi(dir+pi/ | + | fill(A--A+arrowlength*expi(dir+pi/8)--A+arrowlength*expi(dir-pi/8)--cycle); |
} | } | ||
pair getCenter(int i, int j){ return ((2*j-i)*h,-i);} | pair getCenter(int i, int j){ return ((2*j-i)*h,-i);} | ||
Line 223: | Line 221: | ||
<center>[[#toc|Back to Top]]</center> | <center>[[#toc|Back to Top]]</center> | ||
− | == Geometric series == | + | === Geometric series === |
<center><asy>defaultpen(linewidth(0.7)); unitsize(15); | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); | ||
int n = 10; /* # of iterations */ | int n = 10; /* # of iterations */ | ||
Line 319: | Line 317: | ||
} | } | ||
− | htick((-1,0),(-1,h),(.15,0)); htick((0,h+1),(h,h+1)); htick((h+1,h),(h+1,h*r),(.15,0)); | + | /* htick((-1,0),(-1,h),(.15,0)); htick((0,h+1),(h,h+1)); */ htick((h+1,h),(h+1,h*r),(.15,0)); |
− | label("$1$",( | + | label("$1$",(0,h/2),W,sm); label("$1$",(h/2,h),N,sm); label("$1-r$",(h+1,h*(1+r)/2),E,sm); |
</asy><br><br> | </asy><br><br> | ||
Line 362: | Line 360: | ||
== Geometry == | == Geometry == | ||
<center><asy> | <center><asy> | ||
− | defaultpen(linewidth(0.7)); unitsize(15); real a = 3. | + | defaultpen(linewidth(0.7)); unitsize(15); real a = 3.6, b = 4.8, c = (a^2 + b^2)^.5; pair shiftR = (a+b+2,0); pen sm = fontsize(10), heavy = linewidth(1.6); |
void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | void makeshiftarrow(pair A, real dir, real arrowlength = 0.5){ /* Arrow option resizes */ | ||
+ | fill(A--A+arrowlength*expi(dir+pi/8)--A+arrowlength*expi(dir-pi/8)--cycle); | ||
+ | } | ||
+ | { /* left side */ | ||
filldraw(xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.9,0.8)); | filldraw(xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.9,0.8)); | ||
filldraw((b,0) --(b,a)--(0,a) --cycle, rgb(0.9,1,0.9)); | filldraw((b,0) --(b,a)--(0,a) --cycle, rgb(0.9,1,0.9)); | ||
Line 371: | Line 373: | ||
filldraw((a+b,b)--(b,b)--(b,0) --cycle, rgb(0.9,1,0.9)); | filldraw((a+b,b)--(b,b)--(b,0) --cycle, rgb(0.9,1,0.9)); | ||
− | htick((0,-c/10),(b,-c/10),(0,0.15)); htick((-c/10,0),(-c/10,a),(0.15,0)); label("$a$",(-c/10,a/2),W,sm); label("$b$",(b/2,-c/10),S,sm); label("$c$", (a/2,a+b/2),NW,sm); label("$b-a$",((a+b)/2 | + | htick((0,-c/10),(b,-c/10),(0,0.15)); htick((-c/10,0),(-c/10,a),(0.15,0)); label("$a$",(-c/10,a/2),W,sm); label("$b$",(b/2,-c/10),S,sm); label("$c$", (a/2,a+b/2),NW,sm); label("$b-a$",(b,(a+b)/2),E,sm); |
− | + | } | |
− | + | { /* right side */ | |
+ | filldraw(shift(shiftR)*xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.9,0.8)); | ||
+ | filldraw(shift(shiftR)*((0,a) --(a,a)--(a,a+b)--cycle), rgb(0.9,1,0.9)); | ||
+ | filldraw(shift(shiftR)*((a,a+b)--(a,b)--(a+b,b)--cycle), rgb(0.9,1,0.9)); | ||
+ | fill(shift(shiftR )*xscale(a)*yscale(a)*unitsquare,rgb(0.9,0.7,0.7)); | ||
+ | fill(shift(shiftR+(a,0))*xscale(b)*yscale(b)*unitsquare,rgb(0.9,0.7,0.7)); | ||
+ | filldraw(shift(shiftR)*((a+b,b)--(b,b)--(b,0) --cycle), rgb(0.7,0.9,0.7)); | ||
+ | filldraw(shift(shiftR)*((b,0) --(b,a)--(0,a) --cycle), rgb(0.7,0.9,0.7)); | ||
+ | draw(shift(shiftR )*xscale(a)*yscale(a)*unitsquare,heavy); | ||
+ | draw(shift(shiftR+(a,0))*xscale(b)*yscale(b)*unitsquare,heavy); | ||
+ | draw(shift(shiftR)*((2*a/3,a+b/3)--(b/3,a/3) ^^ (a+b/3,b+a/3)--(b+2*a/3,b/3))); | ||
+ | makeshiftarrow(shiftR+(b/3,a/3),angle((2*a/3,a+b/3)-(b/3,a/3))); makeshiftarrow(shiftR+(b+2*a/3,b/3),angle((a+b/3,b+a/3)-(b+2*a/3,b/3))); | ||
− | + | label("$a$",shiftR+(0,a/2),W,sm); | |
− | + | label("$b$",shiftR+(a+b,b/2),E,sm); | |
− | + | label("$c$",shiftR+(a/2,a+b/2),NW,sm); | |
− | + | } | |
− | |||
− | |||
− | |||
</asy><br> | </asy><br> | ||
− | The | + | The [[Pythagorean Theorem]] (first of many proofs): the left diagram shows that <math>c^2 = 4 \cdot \frac{ab}2 + (b-a)^2 = a^2 + b^2</math>, and the right diagram shows a second proof by re-arranging the first diagram.{{ref|3}}<br><br></center> |
− | |||
<center><asy> | <center><asy> | ||
Line 417: | Line 426: | ||
Another proof of the [[Pythagorean Theorem]] ([http://usamts.org/About/U_Gallery.php animated version]).<br><br></center> | Another proof of the [[Pythagorean Theorem]] ([http://usamts.org/About/U_Gallery.php animated version]).<br><br></center> | ||
+ | |||
+ | <center><asy> | ||
+ | defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); real a = 3/1.2, b = 4/1.2, c = (a^2 + b^2)^.5, rot1 = acos(a/c); pair shiftR = (a+b+c,0); | ||
+ | path top = (0,c)--a*expi(rot1)+(0,c)--(c,c), sq1=rotate(rot1*180/pi)*xscale(a)*yscale(a)*unitsquare, sq2=shift(c,0)*rotate(rot1*180/pi)*xscale(b)*yscale(b)*unitsquare, tri = (0,0)--(0,a)--(b,0)--cycle; | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | { /* first picture */ | ||
+ | filldraw(xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.85,0.75)); | ||
+ | filldraw(tri, rgb(0.6,0.9,0.6)); filldraw(shift((a+b,0))*rotate(90)*tri, rgb(0.6,0.9,0.6)); filldraw(shift((a+b,a+b))*rotate(180)*tri, rgb(0.6,0.9,0.6)); filldraw(shift((0,a+b))*rotate(270)*tri, rgb(0.6,0.9,0.6)); | ||
+ | draw((0,a)--(a+b,b), linetype("2 4")+linewidth(0.7)); | ||
+ | |||
+ | label("$a$",(0,a/2),W,sm); label("$b$",(b/2,0),S,sm); label("$c$",(b/2,a/2),NE,sm); | ||
+ | } | ||
+ | |||
+ | { /* second picture */ | ||
+ | filldraw(shift(shiftR)*xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.85,0.75)); | ||
+ | filldraw(shift(shiftR+(a,a) )*rotate(270)*reflect((0,0),(1,1))*tri, rgb(0.6,0.9,0.6)); | ||
+ | filldraw(shift(shiftR+(a+b,0))*rotate(90)*reflect((0,0),(1,1))*tri, rgb(0.6,0.9,0.6)); | ||
+ | filldraw(shift(shiftR+(a,a) )*rotate(90)*tri, rgb(0.6,0.9,0.6)); | ||
+ | filldraw(shift(shiftR+(0,a+b))*rotate(270)*tri, rgb(0.6,0.9,0.6)); | ||
+ | |||
+ | label("$a$",shiftR+(0,a/2),W,sm); label("$a$",shiftR+(a/2,0),S,sm); label("$b$",shiftR+(a+b,a+b/2),E,sm); label("$b$",shiftR+(a+b/2,a+b),N,sm); | ||
+ | } | ||
+ | </asy><br> | ||
+ | |||
+ | Another proof of the [[Pythagorean Theorem]]; the left-hand diagram suggests the identity <math>c^2 = (a+b)^2 - 4 \cdot \frac{ab}2 = a^2 + b^2</math>, and the right-hand diagram offers another re-arrangement proof.<br><br></center> | ||
+ | |||
+ | <center><asy> | ||
+ | defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); real a = 3/1.2, b = 4/1.2, c = (a^2 + b^2)^.5, rot1 = acos(a/c); | ||
+ | path top = (0,c)--a*expi(rot1)+(0,c)--(c,c), sq1=rotate(rot1*180/pi)*xscale(a)*yscale(a)*unitsquare, sq2=shift(c,0)*rotate(rot1*180/pi)*xscale(b)*yscale(b)*unitsquare; | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | filldraw((0,0)--(c,0)--a*expi(rot1)--cycle, rgb(1,0.85,0.7)); /* draw(rightanglemark((0,0),a*expi(rot1),(c,0))); */ | ||
+ | filldraw(sq1, rgb(0.95,1,0.95)); | ||
+ | filldraw(sq2, rgb(0.95,1,0.95)); | ||
+ | filldraw(rotate(270)*xscale(c)*yscale(c)*unitsquare, rgb(0.96,1,0.96)); | ||
+ | |||
+ | label("$a$",a/2*expi(rot1),SE,sm); label("$b$",a/2*expi(rot1)+(c/2,0),SW,sm); label("$c$",(c/2,-c),S,sm); | ||
+ | </asy><br> | ||
+ | |||
+ | COMING: The last (sixth) proof of the [[Pythagorean Theorem]] we shall present on this page, this one by dissection.<br><br></center> | ||
+ | |||
+ | <center><asy> | ||
+ | pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | ||
+ | path xaxis = (-3,0)--(3,0); pair A = (-2,2), B = (1.5,1.5), B3 = (-1.5,0), B2 = (B.x,-B.y), C2 = IP(xaxis, A--B2); | ||
+ | |||
+ | D(xaxis,Arrows(8)); D(D(A)--D(C2)--D(B)); D(D(B2)--C2,dashed+linewidth(0.7)); | ||
+ | D(A--D(B3)--B,dotted+linewidth(0.7)); D(B3--B2,dotted); | ||
+ | MP("(a,b)",A,W); MP("(c,d)",B,E); MP("(c,-d)",B2,E); | ||
+ | </asy><br> | ||
+ | |||
+ | The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> | ||
<center><asy>defaultpen(linewidth(1)); unitsize(15); pen dotted = linetype("2 4"), sm = fontsize(10); real r = 2; | <center><asy>defaultpen(linewidth(1)); unitsize(15); pen dotted = linetype("2 4"), sm = fontsize(10); real r = 2; |
Revision as of 23:32, 27 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Nichomauss' Theorem: can be written as the sum of consecutive integers, and consequently that .
Another proof of the identity .
The identity , where is the th Fibonacci number.
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
The Pythagorean Theorem (first of many proofs): the left diagram shows that , and the right diagram shows a second proof by re-arranging the first diagram.[3]
Another proof of the Pythagorean Theorem (animated version).
Another proof of the Pythagorean Theorem; the left-hand diagram suggests the identity , and the right-hand diagram offers another re-arrangement proof.
COMING: The last (sixth) proof of the Pythagorean Theorem we shall present on this page, this one by dissection.
The smallest distance necessary to travel between , the x-axis, and then for is given by .
In trapezoid with , then .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[5]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ Attributed to the Chinese text Zhou Bi Suan Jing.
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.