Difference between revisions of "2007 AMC 12B Problems/Problem 19"

m (See Also)
m
Line 2: Line 2:
 
Rhombus <math>ABCD</math>, with side length <math>6</math>, is rolled to form a cylinder of volume <math>6</math> by taping <math>\overline{AB}</math> to <math>\overline{DC}</math>. What is <math>\sin(\angle ABC)</math>?
 
Rhombus <math>ABCD</math>, with side length <math>6</math>, is rolled to form a cylinder of volume <math>6</math> by taping <math>\overline{AB}</math> to <math>\overline{DC}</math>. What is <math>\sin(\angle ABC)</math>?
  
<math>\mathrm {(A)} \frac{\pi}{9}</math>  <math>\mathrm {(B)} \frac{1}{2}</math>  <math>\mathrm {(C)} \frac{\pi}{6}</math>  <math>\mathrm {(D)} \frac{\pi}{4}</math>  <math>\mathrm {(E)} \frac{\sqrt{3}}{2}</math>
+
<math>\mathrm{(A)}\ \frac{\pi}{9} \qquad \mathrm{(B)}\ \frac{1}{2} \qquad \mathrm{(C)}\ \frac{\pi}{6} \qquad \mathrm{(D)}\ \frac{\pi}{4} \qquad \mathrm{(E)}\ \frac{\sqrt{3}}{2}</math>
  
 
==Solution==
 
==Solution==
Line 17: Line 17:
 
label("\(h\)",(3,2.6),E);
 
label("\(h\)",(3,2.6),E);
 
</asy>
 
</asy>
 
 
  
 
<math>V_{Cylinder} = \pi r^2 h</math>
 
<math>V_{Cylinder} = \pi r^2 h</math>

Revision as of 17:41, 28 March 2010

Problem 19

Rhombus $ABCD$, with side length $6$, is rolled to form a cylinder of volume $6$ by taping $\overline{AB}$ to $\overline{DC}$. What is $\sin(\angle ABC)$?

$\mathrm{(A)}\ \frac{\pi}{9} \qquad \mathrm{(B)}\ \frac{1}{2} \qquad \mathrm{(C)}\ \frac{\pi}{6} \qquad \mathrm{(D)}\ \frac{\pi}{4} \qquad \mathrm{(E)}\ \frac{\sqrt{3}}{2}$

Solution

[asy] pair A=(0,0), B=(6*dir(60)), D=(6,0); pair C=B+D;  draw(A--B--C--D--A); draw(B--(3,0));  label("\(A\)",A,SW);label("\(B\)",B,NW);label("\(C\)",C,NE);label("\(D\)",D,SE); label("\(6\)",B/2,NW); label("\(\theta\)",(.8,.5)); label("\(h\)",(3,2.6),E); [/asy]

$V_{Cylinder} = \pi r^2 h$

Where $C = 2\pi r = 6$ and $h=6\sin\theta$

$r = \frac{3}{\pi}$

$V = \pi \left(\frac{3}{\pi}\right)^2\cdot 6\sin\theta$

$6 = \frac{9}{\pi} \cdot 6\sin\theta$

$\sin\theta = \frac{\pi}{9} \Rightarrow \mathrm{(A)}$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions