Difference between revisions of "2002 AMC 10B Problems/Problem 22"
(created page, added problem, solution, need box) |
|||
Line 1: | Line 1: | ||
− | == Problem == | + | == Problem 22 == |
Let <math>\triangle{XOY}</math> be a right-triangle with <math>m\angle{XOY}=90^\circ</math>. Let <math>M</math> and <math>N</math> be the midpoints of the legs <math>OX</math> and <math>OY</math>, respectively. Given <math>XN=19</math> and <math>YM=22</math>, find <math>XY</math>. | Let <math>\triangle{XOY}</math> be a right-triangle with <math>m\angle{XOY}=90^\circ</math>. Let <math>M</math> and <math>N</math> be the midpoints of the legs <math>OX</math> and <math>OY</math>, respectively. Given <math>XN=19</math> and <math>YM=22</math>, find <math>XY</math>. | ||
+ | |||
+ | <math> \mathrm{(A) \ } 24\qquad \mathrm{(B) \ } 26\qquad \mathrm{(C) \ } 28\qquad \mathrm{(D) \ } 30\qquad \mathrm{(E) \ } 32 </math> | ||
== Solution == | == Solution == | ||
− | Let <math>OM=MX=x</math> and <math>ON=NY=y</math>. By the Pythagorean Theorem, < | + | Let <math>OM=MX=x</math> and <math>ON=NY=y</math>. By the Pythagorean Theorem, <math>x^2+4y^2=484</math> and <math>4x^2+y^2=361</math> We wish to find <math>\sqrt{4x^2+4y^2}</math>. So, we add the two equations, multiply by <math>\frac{4}{5}</math>, and take the square root. |
+ | <cmath>\begin{align*} | ||
+ | 5x^2+5y^2&=845\ | ||
+ | 4x^2+4y^2&=676\ | ||
+ | \sqrt{4x^2+4y^2}&=\boxed{\mathrm{(B) \ } 26} | ||
+ | \end{align*}</cmath> |
Revision as of 14:46, 4 June 2011
Problem 22
Let be a right-triangle with . Let and be the midpoints of the legs and , respectively. Given and , find .
Solution
Let and . By the Pythagorean Theorem, and We wish to find . So, we add the two equations, multiply by , and take the square root.