Difference between revisions of "2007 AMC 12B Problems/Problem 14"

Line 1: Line 1:
 +
{{duplicate|[[2007 AMC 12B Problems|2007 AMC 12B #14]] and [[2007 AMC 10B Problems|2007 AMC 10B #17]]}}
 
==Problem 14==
 
==Problem 14==
 
Point <math>P</math> is inside equilateral <math>\triangle ABC</math>. Points <math>Q</math>, <math>R</math>, and <math>S</math> are the feet of the perpendiculars from <math>P</math> to <math>\overline{AB}</math>, <math>\overline{BC}</math>, and <math>\overline{CA}</math>, respectively. Given that <math>PQ=1</math>, <math>PR=2</math>, and <math>PS=3</math>, what is <math>AB</math>?
 
Point <math>P</math> is inside equilateral <math>\triangle ABC</math>. Points <math>Q</math>, <math>R</math>, and <math>S</math> are the feet of the perpendiculars from <math>P</math> to <math>\overline{AB}</math>, <math>\overline{BC}</math>, and <math>\overline{CA}</math>, respectively. Given that <math>PQ=1</math>, <math>PR=2</math>, and <math>PS=3</math>, what is <math>AB</math>?
Line 9: Line 10:
 
Summing the areas of each of these triangles and equating it to the area of the entire triangle, we get:
 
Summing the areas of each of these triangles and equating it to the area of the entire triangle, we get:
  
<math>\frac{s(1)}{2} + \frac{s(2)}{2} + \frac{s(3)}{2} = \frac{s^2\sqrt{3}}{4}</math> where <math>s</math> is the length of a side
+
<cmath>\frac{s(1)}{2} + \frac{s(2)}{2} + \frac{s(3)}{2} = \frac{s^2\sqrt{3}}{4}</cmath>
 +
where <math>s</math> is the length of a side
  
<math>s = 4\sqrt{3} \Rightarrow \mathrm {(D)}</math>
+
<cmath>s = \boxed{\mathrm{(D) \ } 4\sqrt{3}}</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2007|ab=B|num-b=13|num-a=15}}
 
{{AMC12 box|year=2007|ab=B|num-b=13|num-a=15}}
 +
 +
{{AMC10 box|year=2007|ab=B|num-b=16|num-a=18}}

Revision as of 15:30, 5 June 2011

The following problem is from both the 2007 AMC 12B #14 and 2007 AMC 10B #17, so both problems redirect to this page.

Problem 14

Point $P$ is inside equilateral $\triangle ABC$. Points $Q$, $R$, and $S$ are the feet of the perpendiculars from $P$ to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. Given that $PQ=1$, $PR=2$, and $PS=3$, what is $AB$?

$\mathrm{(A)}\ 4 \qquad \mathrm{(B)}\ 3\sqrt{3} \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 4\sqrt{3} \qquad \mathrm{(E)}\ 9$

Solution

Drawing $\overline{PA}$, $\overline{PB}$, and $\overline{PC}$, $\triangle ABC$ is split into three smaller triangles. The altitudes of these triangles are given in the problem as $PQ$, $PR$, and $PS$.

Summing the areas of each of these triangles and equating it to the area of the entire triangle, we get:

\[\frac{s(1)}{2} + \frac{s(2)}{2} + \frac{s(3)}{2} = \frac{s^2\sqrt{3}}{4}\] where $s$ is the length of a side

\[s = \boxed{\mathrm{(D) \ } 4\sqrt{3}}\]

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions