Difference between revisions of "2003 AMC 10A Problems/Problem 1"

m
(Redirected page to 2003 AMC 12A Problems/Problem 1)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT[[2003 AMC 12A Problems/Problem 1]]
What is the difference between the sum of the first <math>2003</math> even counting numbers and the sum of the first <math>2003</math> odd counting numbers?
 
 
 
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2003\qquad \mathrm{(E) \ } 4006 </math>
 
 
 
== Solution ==
 
The first <math>2003</math> even counting numbers are <math>2,4,6,...,4006</math>.
 
 
 
The first <math>2003</math> odd counting numbers are <math>1,3,5,...,4005</math>.
 
 
 
Thus, the problem is asking for the value of <math>(2+4+6+...+4006)-(1+3+5+...+4005)</math>.
 
 
 
<math>(2+4+6+...+4006)-(1+3+5+...+4005) = (2-1)+(4-3)+(6-5)+...+(4006-4005) </math>
 
 
 
<math>= 1+1+1+\ldots+1 = 2003 \Rightarrow \text{D}</math>
 
 
 
== See Also ==
 
*[[2003 AMC 10A Problems]]
 
 
 
*[[2003 AMC 10A Problems/Problem 2|Next Problem]]
 
 
 
[[Category:Introductory Algebra Problems]]
 

Latest revision as of 15:49, 29 July 2011