Difference between revisions of "2003 AMC 10B Problems/Problem 23"

m
m (Solution)
Line 10: Line 10:
  
 
An easy way to look at this:
 
An easy way to look at this:
Area of Octagon: <math> \frac{ap}{2}=1 </math>
+
 
Area of Rectangle: <math> \frac{p}{8}\times 2a=\frac{ap}{4} </math>
+
Area of Octagon: <math> \frac{ap}{2}=1 </math>.
You can see from this that the octagon's area is twice as large as the rectangle's area is <math>\boxed{\textbf{(D)}\ \frac{1}{2}}</math>
+
 
 +
Area of Rectangle: <math> \frac{p}{8}\times 2a=\frac{ap}{4} </math>.
 +
 
 +
You can see from this that the octagon's area is twice as large as the rectangle's area is <math>\boxed{\textbf{(D)}\ \frac{1}{2}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2003|ab=B|num-b=22|num-a=24}}
 
{{AMC10 box|year=2003|ab=B|num-b=22|num-a=24}}

Revision as of 13:06, 29 December 2011

Problem

A regular octagon $ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ABEF$?

[asy] unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5); draw(A--B--C--D--E--F--G--H--cycle); label("$A$",A,NNW); label("$B$",B,NNE); label("$C$",C,ENE); label("$D$",D,ESE); label("$E$",E,SSE); label("$F$",F,SSW); label("$G$",G,WSW); label("$H$",H,WNW);[/asy]

$\textbf{(A)}\ 1-\frac{\sqrt2}{2}\qquad\textbf{(B)}\ \frac{\sqrt2}{4}\qquad\textbf{(C)}\ \sqrt2-1\qquad\textbf{(D)}\ \frac{1}2\qquad\textbf{(E)}\ \frac{1+\sqrt2}{4}$

Solution

An easy way to look at this:

Area of Octagon: $\frac{ap}{2}=1$.

Area of Rectangle: $\frac{p}{8}\times 2a=\frac{ap}{4}$.

You can see from this that the octagon's area is twice as large as the rectangle's area is $\boxed{\textbf{(D)}\ \frac{1}{2}}$.

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions