Difference between revisions of "Rational approximation"
m (in trivial theorem, pq --> p/q) |
(→Proof of Dirichlet's theorem) |
||
Line 10: | Line 10: | ||
Let <math>n\ge 1</math> be any integer. Then there exists a rational number <math>\frac pq</math> such that <math>1\le q\le n</math> and <math>\left|x-\frac pq\right|<\frac 1{nq}</math>. | Let <math>n\ge 1</math> be any integer. Then there exists a rational number <math>\frac pq</math> such that <math>1\le q\le n</math> and <math>\left|x-\frac pq\right|<\frac 1{nq}</math>. | ||
==Proof of Dirichlet's theorem== | ==Proof of Dirichlet's theorem== | ||
− | Consider the [[fractional part]]s <math>\{1\cdot x\}, \{2\cdot x\},\dots, \{n\cdot x\}</math>. They all belong to the half-open interval <math>[0,1)</math>. Represent the interval <math>[0,1)</math> as the union of <math>n</math> subintervals <math>[0,1)=\left[0,\frac 1n\right)\cup\dots\cup\left[\frac{n-1}{n},1\right),</math>. | + | Consider the [[fractional part]]s <math>\{0\cdot x\},\{1\cdot x\}, \{2\cdot x\},\dots, \{n\cdot x\}</math>. They all belong to the half-open interval <math>[0,1)</math>. Represent the interval <math>[0,1)</math> as the union of <math>n</math> subintervals <math>[0,1)=\left[0,\frac 1n\right)\cup\left[\frac 1n,\frac 2n\right)\cup\dots\cup\left[\frac{n-1}{n},1\right),</math>. Since we have <math>n+1</math> fractional parts and only <math>n</math> subintervals, the [[pigeonhole principle]] implies that there are two integers <math>0\le k<\ell\le n</math> such that <math>\{kx\}</math> and <math>\{\ell x\}</math> belong to the same interval. But then the difference <math>(\ell-k)x</math> differs by less than <math>\frac 1n</math> from some integer number <math>p</math>: <math>|(\ell-k)x-p|<\frac 1n</math>. Dividing by <math>q=\ell-k</math>, we get <math>\left|x-\frac pq\right|<\frac1{nq}</math>. |
+ | ==Corollary== | ||
''to be continued'' | ''to be continued'' |
Revision as of 23:08, 23 June 2006
Contents
[hide]Introduction
The main theme of this article is the question how well a given real number can be approximated by rational numbers. Of course, since the rationals are dense on the real line, we, surely, can make the difference between and its rational approximation as small as we wish. The problem is that, as we try to make closer and closer to , we may have to use larger and larger and . So, the reasonable question to ask here is how well can we approximate by rationals with not too large denominators.
Trivial theorem
Every real number can be approximated by a rational number with a given denominator with an error not exceeding .
Proof
Note that the closed interval has length and, therefore, contains at least one integer. Choosing to be that integer, we immediately get the result.
So, the interesting question is whether we can get a smaller error of approximation than . Surprisingly enough, it is possible, if not for all , then, at least for some of them.
Dirichlet's theorem
Let be any integer. Then there exists a rational number such that and .
Proof of Dirichlet's theorem
Consider the fractional parts . They all belong to the half-open interval . Represent the interval as the union of subintervals . Since we have fractional parts and only subintervals, the pigeonhole principle implies that there are two integers such that and belong to the same interval. But then the difference differs by less than from some integer number : . Dividing by , we get .
Corollary
to be continued
Liouville Approximation Theorem
We can generalize Dirichlet's theorem as follows: If is an algebraic number of degree , then there are only finitely many rational numbers satisfying the following inequality: . This gives us the following corollary: is a transcendental number, known as Liouville's constant.