Difference between revisions of "2002 AIME II Problems/Problem 7"

(Solution)
Line 20: Line 20:
 
Thus, <math>k \equiv 0, 24, 12 \pmod{25}</math>.  
 
Thus, <math>k \equiv 0, 24, 12 \pmod{25}</math>.  
  
From the [[Chinese Remainder Theorem]], <math>k \equiv 0, 112, 224, 225, 287, 399 \pmod{400}</math>. Thus, the smallest positive integer <math>k</math> is <math>\boxed{112}</math>.
+
From the [[Chinese Remainder Theorem]], <math>k \equiv 0, 112, 224, 175, 287, 399 \pmod{400}</math>. Thus, the smallest positive integer <math>k</math> is <math>\boxed{112}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2002|n=II|num-b=6|num-a=8}}
 
{{AIME box|year=2002|n=II|num-b=6|num-a=8}}

Revision as of 01:54, 15 February 2012

Problem

It is known that, for all positive integers $k$,

$1^2+2^2+3^2+\ldots+k^{2}=\frac{k(k+1)(2k+1)}6$.

Find the smallest positive integer $k$ such that $1^2+2^2+3^2+\ldots+k^2$ is a multiple of $200$.

Solution

$\frac{k(k+1)(2k+1)}{6}$ is a multiple of $200$ if $k(k+1)(2k+1)$ is a multiple of $1200 = 2^4 \cdot 3 \cdot 5^2$. So $16,3,25|k(k+1)(2k+1)$.

Since $2k+1$ is always odd, and only one of $k$ and $k+1$ is even, either $k, k+1 \equiv 0 \pmod{16}$.

Thus, $k \equiv 0, 15 \pmod{16}$.

If $k \equiv 0 \pmod{3}$, then $3|k$. If $k \equiv 1 \pmod{3}$, then $3|2k+1$. If $k \equiv 2 \pmod{3}$, then $3|k+1$.

Thus, there are no restrictions on $k$ in $\pmod{3}$.

Ii is easy to see that only one of $k$, $k+1$, and $2k+1$ is divisible by $5$. So either $k, k+1, 2k+1 \equiv 0 \pmod{25}$.

Thus, $k \equiv 0, 24, 12 \pmod{25}$.

From the Chinese Remainder Theorem, $k \equiv 0, 112, 224, 175, 287, 399 \pmod{400}$. Thus, the smallest positive integer $k$ is $\boxed{112}$.

See also

2002 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions