Difference between revisions of "2011 IMO Problems/Problem 1"
(Answer to problem) |
(Formatted) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Given any set <math>A = \{a_1, a_2, a_3, a_4\}</math> of four distinct positive integers, we denote the sum <math>a_1+a_2+a_3+a_4</math> by <math>s_A</math>. Let <math>n_A</math> denote the number of pairs <math>(i,j)</math> with <math>1 \leq i < j \leq 4</math> for which <math>a_i+a_j</math> divides <math>s_A</math>. Find all sets <math>A</math> of four distinct positive integers which achieve the largest possible value of <math>n_A</math>. | Given any set <math>A = \{a_1, a_2, a_3, a_4\}</math> of four distinct positive integers, we denote the sum <math>a_1+a_2+a_3+a_4</math> by <math>s_A</math>. Let <math>n_A</math> denote the number of pairs <math>(i,j)</math> with <math>1 \leq i < j \leq 4</math> for which <math>a_i+a_j</math> divides <math>s_A</math>. Find all sets <math>A</math> of four distinct positive integers which achieve the largest possible value of <math>n_A</math>. | ||
− | + | ==Solution== | |
− | Solution | ||
− | |||
Firstly, if we order <math>a_1 \ge a_2 \ge a_3 \ge a_4</math>, we see <math>2(a_3 + a_4) \ge (a_1+a_2)+(a_3+a_4) = s_A \geq 0</math>, so <math>(a_3, a_4)</math> isn't a couple that satisfies the conditions of the problem. Also, <math>2(a_4 + a_2) = (a_4 + a_4) + (a_2 + a_2) \ge (a_4+a_3)+(a_2+a_1) = s_A \ge 0</math>, so again <math>(a_2, a_4)</math> isn't a good couple. We have in total 6 couples. So <math>n_A \leq 6-2=4</math>. | Firstly, if we order <math>a_1 \ge a_2 \ge a_3 \ge a_4</math>, we see <math>2(a_3 + a_4) \ge (a_1+a_2)+(a_3+a_4) = s_A \geq 0</math>, so <math>(a_3, a_4)</math> isn't a couple that satisfies the conditions of the problem. Also, <math>2(a_4 + a_2) = (a_4 + a_4) + (a_2 + a_2) \ge (a_4+a_3)+(a_2+a_1) = s_A \ge 0</math>, so again <math>(a_2, a_4)</math> isn't a good couple. We have in total 6 couples. So <math>n_A \leq 6-2=4</math>. | ||
Line 21: | Line 20: | ||
ANSWER: <math>\{11a, a, 5a, 7a\}</math>,<math>\{a, 14a, 6a, 9a\}</math>, for any positive integer <math>a</math>. | ANSWER: <math>\{11a, a, 5a, 7a\}</math>,<math>\{a, 14a, 6a, 9a\}</math>, for any positive integer <math>a</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{IMO box|year=2011|before=First question|num-a=2}} | ||
+ | |||
+ | [[Category:Olympiad Number Theory Problems]] |
Revision as of 16:55, 3 April 2012
Problem
Given any set of four distinct positive integers, we denote the sum by . Let denote the number of pairs with for which divides . Find all sets of four distinct positive integers which achieve the largest possible value of .
Solution
Firstly, if we order , we see , so isn't a couple that satisfies the conditions of the problem. Also, , so again isn't a good couple. We have in total 6 couples. So .
We now find all sets with . If and are both good couples, and , we have . So WLOG with and . It's easy to see and since are bad, all couples containing must be good. Obviously and are good (). So we have and .
Using the second equation, we see that if , , for some a positive integer.
So now we use the first equation to get , for a natural .
Finally, we obtain 1, 2 or 4. We divide in cases:
CASE I: . So and . But 3, 4,5 or 6. implies , impossible. when . We easily see and , impossible since . When , , and we get .Uf , and we get .
CASE II and III:2, 4. Left to the reader.
ANSWER: ,, for any positive integer .
See Also
2011 IMO (Problems) • Resources | ||
Preceded by First question |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |