Difference between revisions of "1998 AJHSME Problems/Problem 2"

(Solution)
m
Line 1: Line 1:
== Problem 2 ==
+
== Problem ==
  
 
If <math>Unknown environment 'tabular' = \text{a}\cdot \text{d} - \text{b}\cdot \text{c}</math>, what is the value of <math>Unknown environment 'tabular'</math>?
 
If <math>Unknown environment 'tabular' = \text{a}\cdot \text{d} - \text{b}\cdot \text{c}</math>, what is the value of <math>Unknown environment 'tabular'</math>?

Revision as of 11:48, 23 December 2012

Problem

If $\begin{tabular}{r|l}a&b \\ \hline c&d\end{tabular} = \text{a}\cdot \text{d} - \text{b}\cdot \text{c}$, what is the value of $\begin{tabular}{r|l}3&4 \\ \hline 1&2\end{tabular}$?

$\text{(A)}\ -2 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 0 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2$

Solution

Plugging in values for $a$, $b$, $c$, and $d$, we get

$a=3$, $b=4$, $c=1$, $d=2$,

$a\timesd=3\times2=6$ (Error compiling LaTeX. Unknown error_msg)

$b\timesc=4\times1=4$ (Error compiling LaTeX. Unknown error_msg)

$6-4=2$

$\boxed{E}$

See also

1998 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions