Difference between revisions of "2009 AMC 8 Problems/Problem 12"

Line 1: Line 1:
 
==Problem==
 
==Problem==
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?
+
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?  
  
 
<asy>
 
<asy>
Line 11: Line 11:
 
label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2));
 
label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2));
 
label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
 
label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
<math> \textbf{(A)}\ \frac {1}{2} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {3}{4} \qquad \textbf{(D)}\ \frac {7}{9} \qquad \textbf{(E)}\ \frac {5}{6}</math>
+
<asy>
 +
unitsize(30);
 +
draw(unitcircle);
 +
draw((0,0)--(0,-1));
 +
draw((0,0)--(cos(pi/6),sin(pi/6)));
 +
draw((0,0)--(-cos(pi/6),sin(pi/6)));
 +
label("$2$",(0,.5));
 +
label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2));
 +
label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));</asy>
 +
 
 +
<math> \textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6} </math>
 +
 
 +
==Solution==
 +
The possible sums are
 +
<cmath>\begin{tabular}{c|ccc}
 +
& 1 & 3 & 5 \ \hline
 +
2 & 3 & 5 & 7 \
 +
4 & 5 & 7 & 9 \
 +
6 & 7 & 9 & 11
 +
\end{tabular}</cmath>
 +
 
 +
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2009|num-b=11|num-a=13}}
 
{{AMC8 box|year=2009|num-b=11|num-a=13}}

Revision as of 15:57, 25 December 2012

Problem

The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?

[asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$1$",(0,.5)); label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy] [asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$2$",(0,.5)); label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]

$\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6}$

Solution

The possible sums are \[\begin{tabular}{c|ccc} & 1 & 3 & 5 \\ \hline 2 & 3 & 5 & 7 \\ 4 & 5 & 7 & 9 \\ 6 & 7 & 9 & 11 \end{tabular}\]

Only $9$ is not prime, so there are $7$ prime numbers and $9$ total numbers for a probability of $\boxed{\textbf{(D)}\ \frac79}$.

See Also

2009 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions