Difference between revisions of "Asymptote: 3D graphics"
(→Definitions) |
(→Projection) |
||
Line 48: | Line 48: | ||
currentprojection=perspective(x,y,z); | currentprojection=perspective(x,y,z); | ||
</code> | </code> | ||
− | Does the same thing, but | + | Does the same thing, but it distorts the picture to imitate actual perspective. |
'''Example:''' | '''Example:''' | ||
Line 80: | Line 80: | ||
'''Note:''' When current projection is not given, <tt>three</tt> tries to find the "best" view. | '''Note:''' When current projection is not given, <tt>three</tt> tries to find the "best" view. | ||
+ | |||
==Interactive Projection== | ==Interactive Projection== | ||
When using Asymptote on your computer (not on AoPS), you can add some code that lets you rotate/pan/zoom with the mouse. | When using Asymptote on your computer (not on AoPS), you can add some code that lets you rotate/pan/zoom with the mouse. |
Revision as of 13:35, 24 March 2013
Contents
[hide]Three
Three is a module in Asymptote that allows the user to create three dimensional graphics. Usually all you must do is import three,
import three;
then change from using doubles eg. (x,y) to using triples eg. (x,y,z) as coordinates. Some functions do not work when three is active. For example: In order to fill a surface one must define a surface and draw that. instead of using filldraw. This is also described <url>http://www.artofproblemsolving.com/Forum/viewtopic.php?f=519&t=399845 here</url>.
Data types
three defines the data types:
- path3, (3D version of path)
- guide3, (3D version of guide)
- and surface (a surface bounded by a path(3))
and other, less important ones.
Definitions
three defines the surfaces:
- unitcube
- unitsphere
- unitdisk
- unitplane
- unitcylinder
- unitcone
- unitsolidcone
- and unithemisphere.
These can be drawn like you would normally draw an object in 2D
draw(unitcube,green);
Transforms also work
draw(shift(2,3,4)*scale(5,20,7)*unitcone,paleblue);
Projection
You can use
currentprojection=orthographic(x,y,z);
To change current the view.
currentprojection=perspective(x,y,z);
Does the same thing, but it distorts the picture to imitate actual perspective.
Example:
base code:
import three; /* perspective line /* draw(unitcube,palegrey);
Using
currentprojection=orthographic(1,1/2,1/2);
We get a unit cube as:
Using
currentprojection=perspective(1,1/2,1/2);
We get a unit cube as:
Note: When current projection is not given, three tries to find the "best" view.
Interactive Projection
When using Asymptote on your computer (not on AoPS), you can add some code that lets you rotate/pan/zoom with the mouse.
import settings; leftbutton=new string[] {"rotate","zoom","shift","pan"}; middlebutton=new string[] {"menu"}; rightbutton=new string[] {"zoom/menu","rotateX","rotateY","rotateZ"}; wheelup=new string[] {"zoomin"}; wheeldown=new string[] {"zoomout"};
When compiling to PDF, it will allow you to rotate/pan/zoom with the mouse.
Arrows and bars
Arrows and bars in 3D are the same as in 2D except you add a 3 to the end of the name. Example.
import three; draw((0,0,0)--(1,1,1),green,Arrows3); draw((0,1,0)--(1,0,1),blue,Bars3);
Examples
import three; unitsize(1cm); size(200); currentprojection=perspective(1/3,-1,1/2); draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle,red); draw((0,0,0)--(0,0,1),red); draw((0,1,0)--(0,1,1),red); draw((1,1,0)--(1,1,1),red); draw((1,0,0)--(1,0,1),red); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle,red); draw((0,0,0)--(1,0,0)--(1,1,0)--cycle,red); draw((0,0,0)--(1,1,0)--(1,1,1)--cycle,blue); label("$o$",(0,0,0),NW); label("$x=1$",(0.5,0,0),S); label("$y=1$",(1,1,0.5),E); label("$z=1$",(1,0.5,0),SE); label("$c$",(0.5,0.5,0.5),N);[/asy]
Which renders to
For other examples, see Platonic solids and 2000 AMC 12 Problems/Problem 25.
Other 3D Modules
Other modules in Asymptote that are for 3D are:
- graph3
- grid3
- contour3
- and solids.