Difference between revisions of "2001 AMC 12 Problems/Problem 21"
(New page: == Problem == Four positive integers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> have a product of <math>8!</math> and satisfy: <cmath> \begin{align*} ab + a + b &...) |
(→See Also) |
||
Line 62: | Line 62: | ||
{{AMC12 box|year=2001|num-b=20|num-a=22}} | {{AMC12 box|year=2001|num-b=20|num-a=22}} | ||
+ | {{MAA Notice}} |
Revision as of 20:04, 3 July 2013
Problem
Four positive integers , , , and have a product of and satisfy:
What is ?
Solution
We can rewrite the three equations as follows:
Let . We get:
Clearly divides . On the other hand, can not divide , as it then would divide . Similarly, can not divide . Hence divides both and . This leaves us with only two cases: and .
The first case solves to , which gives us , but then . (We do not need to multiply, it is enough to note e.g. that the left hand side is not divisible by .)
The second case solves to , which gives us a valid quadruple , and we have .
See Also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.