Difference between revisions of "2010 AMC 10B Problems/Problem 18"
(→Solution 1) |
|||
Line 12: | Line 12: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2010|ab=B|num-b=17|num-a=19}} | {{AMC10 box|year=2010|ab=B|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Revision as of 12:02, 4 July 2013
Contents
Problem
Positive integers , , and are randomly and independently selected with replacement from the set . What is the probability that is divisible by ?
Solution 1
First we factor into . For to be divisible by three we can either have be a multiple of 3 or be a multiple of three. Adding the probability of these two being divisible by 3 we get that the probability is
Solution 2
We look at the probability of each term being 3. 1/3 for the first term, 1/9 for the second term, and 1/27 for the third term. So the solution is 13/27 or E.
See Also
2010 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.