Difference between revisions of "2003 AIME I Problems/Problem 4"

(teX cleanup)
Line 21: Line 21:
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Trigonometry Problems]]
 
[[Category:Intermediate Trigonometry Problems]]
 +
{{MAA Notice}}

Revision as of 18:58, 4 July 2013

Problem

Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1),$ find $n.$

Solution

Using the properties of logarithms, we can simplify the first equation to $\log_{10} \sin x + \log_{10} \cos x = \log_{10}(\sin x \cos x) = -1$. Therefore, $\sin x \cos x = \frac{1}{10}\ (*)$.

Now, manipulate the second equation.

$\begin{align*}

\log_{10} (\sin x + \cos x) &= \frac{1}{2}(\log_{10} n - \log_{10} 10) \ \log_{10} (\sin x + \cos x) &= \left(\log_{10} \sqrt{\frac{n}{10}}\right) \ \sin x + \cos x &= \sqrt{\frac{n}{10}} \ (\sin x + \cos x)^{2} &= \left(\sqrt{\frac{n}{10}}\right)^2 \ \sin^2 x + \cos^2 x +2 \sin x \cos x &= \frac{n}{10} \

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

By the Pythagorean identities, $\sin ^2 x + \cos ^2 x = 1$, and we can substitute the value for $\sin x \cos x$ from $(*)$. $1 + 2\left(\frac{1}{10}\right) = \frac{n}{10} \Longrightarrow n = \boxed{012}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png