Difference between revisions of "2013 AMC 12A Problems/Problem 19"
Armalite46 (talk | contribs) (→Solution 3) |
Armalite46 (talk | contribs) (→Solution 2) |
||
Line 20: | Line 20: | ||
Therefore, the answer is '''D) 61.''' | Therefore, the answer is '''D) 61.''' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 20:13, 7 September 2013
Contents
[hide]Problem
In , , and . A circle with center and radius intersects at points and . Moreover and have integer lengths. What is ?
Solution
Solution 1
Let . Let the circle intersect at and the diameter including intersect the circle again at . Use power of a point on point C to the circle centered at A.
So .
Obviously so we have three solution pairs for . By the Triangle Inequality, only yields a possible length of .
Therefore, the answer is D) 61.
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.