Difference between revisions of "2013 AMC 8 Problems/Problem 6"

(See Also)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
The number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, <math>30 = 6\times5</math>. What is the missing number in the top row?
 +
 +
<asy>
 +
unitsize(0.8cm);
 +
draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle);
 +
draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle);
 +
draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle);
 +
draw((1,2)--(1,4)--(3,4)--(3,2)--cycle);
 +
label("600",(0,-1));
 +
label("30",(-1,1));
 +
label("6",(-2,3));
 +
label("5",(0,3));
 +
</asy>
 +
 +
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6</math>
  
 
==Solution==
 
==Solution==
 +
===Solution 1: Working Backwards===
 +
Let the value in the empty box in the middle row be <math>x</math>, and the value in the empty box in the top row be <math>y</math>. <math>y</math> is the answer we're looking for.
 +
 +
<asy>
 +
unitsize(0.8cm);
 +
draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle);
 +
draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle);
 +
draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle);
 +
draw((1,2)--(1,4)--(3,4)--(3,2)--cycle);
 +
label("600",(0,-1));
 +
label("30",(-1,1));
 +
label("6",(-2,3));
 +
label("5",(0,3));
 +
label("$x$",(1,1));
 +
label("$y$",(2,3));
 +
</asy>
 +
 +
We see that <math>600 = 30x</math>, making <math>x = 20</math>.
 +
 +
<asy>
 +
unitsize(0.8cm);
 +
draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle);
 +
draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle);
 +
draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle);
 +
draw((1,2)--(1,4)--(3,4)--(3,2)--cycle);
 +
label("600",(0,-1));
 +
label("30",(-1,1));
 +
label("6",(-2,3));
 +
label("5",(0,3));
 +
label("20",(1,1));
 +
label("$y$",(2,3));
 +
</asy>
 +
 +
It follows that <math>20 = 5y</math>, so <math>y = \boxed{\textbf{(C)}\ 4}</math>.
 +
 +
===Solution 2: Jumping Back to the Start===
 +
Another way to do this problem is to realize what makes up the bottommost number. This method doesn't work quite as well for this problem, but in a larger tree, it might be faster. (In this case, Solution 1 would be faster since there's only two missing numbers.)
 +
 +
Again, let the value in the empty box in the middle row be <math>x</math>, and the value in the empty box in the top row be <math>y</math>. <math>y</math> is the answer we're looking for.
 +
 +
<asy>
 +
unitsize(0.8cm);
 +
draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle);
 +
draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle);
 +
draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle);
 +
draw((1,2)--(1,4)--(3,4)--(3,2)--cycle);
 +
label("600",(0,-1));
 +
label("$z$",(-1,1));
 +
label("6",(-2,3));
 +
label("5",(0,3));
 +
label("$x$",(1,1));
 +
label("$y$",(2,3));
 +
</asy>
 +
 +
We can write some equations:
 +
 +
<math>600 = 30x\\
 +
30 = 6\cdot 5\\
 +
x = 5y</math>
 +
 +
Now we can substitute into the first equation using the two others:
 +
 +
<math>600 = (6\cdot5)(5y)\\
 +
600= 6\cdot5\cdot5\cdot y\\
 +
600=6\cdot25\cdot y\\
 +
600 = 150y\\
 +
\boxed{\textbf{(C)}\ 4} = y</math>
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=5|num-a=7}}
 
{{AMC8 box|year=2013|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:24, 27 November 2013

Problem

The number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, $30 = 6\times5$. What is the missing number in the top row?

[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("30",(-1,1)); label("6",(-2,3)); label("5",(0,3)); [/asy]

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

Solution

Solution 1: Working Backwards

Let the value in the empty box in the middle row be $x$, and the value in the empty box in the top row be $y$. $y$ is the answer we're looking for.

[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("30",(-1,1)); label("6",(-2,3)); label("5",(0,3)); label("$x$",(1,1)); label("$y$",(2,3)); [/asy]

We see that $600 = 30x$, making $x = 20$.

[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("30",(-1,1)); label("6",(-2,3)); label("5",(0,3)); label("20",(1,1)); label("$y$",(2,3)); [/asy]

It follows that $20 = 5y$, so $y = \boxed{\textbf{(C)}\ 4}$.

Solution 2: Jumping Back to the Start

Another way to do this problem is to realize what makes up the bottommost number. This method doesn't work quite as well for this problem, but in a larger tree, it might be faster. (In this case, Solution 1 would be faster since there's only two missing numbers.)

Again, let the value in the empty box in the middle row be $x$, and the value in the empty box in the top row be $y$. $y$ is the answer we're looking for.

[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("$z$",(-1,1)); label("6",(-2,3)); label("5",(0,3)); label("$x$",(1,1)); label("$y$",(2,3)); [/asy]

We can write some equations:

$600 = 30x\\ 30 = 6\cdot 5\\ x = 5y$

Now we can substitute into the first equation using the two others:

$600 = (6\cdot5)(5y)\\ 600= 6\cdot5\cdot5\cdot y\\ 600=6\cdot25\cdot y\\ 600 = 150y\\ \boxed{\textbf{(C)}\ 4} = y$

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png