Difference between revisions of "2007 AMC 10B Problems/Problem 11"
(→Solution) |
(→Solution 3) |
||
Line 71: | Line 71: | ||
</asy></center> | </asy></center> | ||
− | By the Pythagorean Theorem <cmath>AD = 2\sqrt{2}</cmath> | + | By the Pythagorean Theorem <cmath>AD^2 = 3^2 - 1^2</cmath> <cmath>AD = 2\sqrt{2}</cmath> |
<math>\triangle ADC</math> is similar to <math>\triangle ACR</math>, so <cmath>\frac {2\sqrt{2}}{3} = \frac {3}{2r}</cmath> which gives us <cmath>2r = \frac {9}{2\sqrt{2}} = \frac {9\sqrt{2}}{4}</cmath> so <cmath>r = \frac {9\sqrt{2}}{8}</cmath> | <math>\triangle ADC</math> is similar to <math>\triangle ACR</math>, so <cmath>\frac {2\sqrt{2}}{3} = \frac {3}{2r}</cmath> which gives us <cmath>2r = \frac {9}{2\sqrt{2}} = \frac {9\sqrt{2}}{4}</cmath> so <cmath>r = \frac {9\sqrt{2}}{8}</cmath> |
Revision as of 18:56, 23 December 2013
Problem
A circle passes through the three vertices of an isosceles triangle that has two sides of length and a base of length . What is the area of this circle?
Solution
Solution 1
Let have vertex and center , with foot of altitude from at .
Then by Pythagorean Theorem (with radius , height ) on
Substituting and solving gives . Then the area of the circle is .
Solution 2
By (or we could use and Heron's formula), and the answer is
Alternatively, by the Extended Law of Sines, Answer follows as above.
Solution 3
Extend segment to on Circle .
By the Pythagorean Theorem
is similar to , so which gives us so
The area of the circle is therefor
See also
2007 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.