Difference between revisions of "Radical axis"
(→Exercises) |
|||
Line 2: | Line 2: | ||
==Definitions== | ==Definitions== | ||
The '''power''' of point <math>A</math> with respect to circle <math>\omega</math> (with radius <math>r</math> and center <math>O</math>, which shall thereafter be dubbed <math>pow(P, \omega)</math>, is defined to equal <math>OP^2 - r^2</math>. | The '''power''' of point <math>A</math> with respect to circle <math>\omega</math> (with radius <math>r</math> and center <math>O</math>, which shall thereafter be dubbed <math>pow(P, \omega)</math>, is defined to equal <math>OP^2 - r^2</math>. | ||
+ | |||
+ | Note that the power of a point is negative if the point is inside the circle. | ||
The '''radical axis''' of two circles <math>\omega_1, \omega_2</math> is defined as the locus of the points <math>P</math> such that the [[power of a point|power]] of <math>P</math> with respect to <math>\omega_1</math> and <math>\omega_2</math> are equal. In other words, if <math>O_i, r_i</math> are the center and radius of <math>\omega_i</math>, then a point <math>P</math> is on the radical axis if and only if <cmath>PO_1^2 - r_1^2 = PO_2^2 - r_2^2</cmath> | The '''radical axis''' of two circles <math>\omega_1, \omega_2</math> is defined as the locus of the points <math>P</math> such that the [[power of a point|power]] of <math>P</math> with respect to <math>\omega_1</math> and <math>\omega_2</math> are equal. In other words, if <math>O_i, r_i</math> are the center and radius of <math>\omega_i</math>, then a point <math>P</math> is on the radical axis if and only if <cmath>PO_1^2 - r_1^2 = PO_2^2 - r_2^2</cmath> | ||
Line 7: | Line 9: | ||
==Results== | ==Results== | ||
'''Theorem 1: (Power of a Point)''' | '''Theorem 1: (Power of a Point)''' | ||
− | If a line drawn through point P intersects circle <math>\omega</math> at points A and B, then <math>pow(P, \omega) = PA * PB</math>. | + | If a line drawn through point P intersects circle <math>\omega</math> at points A and B, then <math>|pow(P, \omega)| = PA * PB</math>. |
'''Theorem 2: (Radical Axis Theorem)''' | '''Theorem 2: (Radical Axis Theorem)''' | ||
Line 38: | Line 40: | ||
Parts (b), (c), and (d) will be left to the reader as an exercise. | Parts (b), (c), and (d) will be left to the reader as an exercise. | ||
− | Now, try to prove Theorem 3 on your own! | + | Now, try to prove Theorem 3 on your own! (Hint: Let P be the intersection of two of the radical axises.) |
==Exercises== | ==Exercises== |
Revision as of 18:55, 5 June 2014
Work in Progress
Contents
[hide]Definitions
The power of point with respect to circle (with radius and center , which shall thereafter be dubbed , is defined to equal .
Note that the power of a point is negative if the point is inside the circle.
The radical axis of two circles is defined as the locus of the points such that the power of with respect to and are equal. In other words, if are the center and radius of , then a point is on the radical axis if and only if
Results
Theorem 1: (Power of a Point) If a line drawn through point P intersects circle at points A and B, then . Theorem 2: (Radical Axis Theorem)
a. The radical axis is a line perpendicular to the line connecting the circles' centers (line ).
b. If the two circles intersect at two common points, their radical axis is the line through these two points.
c. If they intersect at one point, their radical axis is the common internal tangent.
d. If the circles do not intersect, their radical axis is the perpendicular to through point A, the point on such that .
Theorem 3: (Radical Axis Concurrence Theorem) The three pairwise radical axes of three circles concur at a point, called the radical center.
Proofs
Theorem 1 is trivial Power of a Point, and thus is left to the reader as an exercise. (Hint: Draw a line through P and the center.)
Theorem 2 shall be proved here. Assume the circles are and with centers and and radii and , respectively. (It may be a good idea for you to draw some circles here.)
Lemma 1: Let be a point in the plane, and let be the foot of the perpendicular from to . Then .
The proof of the lemma is an easy application of the Pythagorean Theorem and will again be left to the reader as an exercise.
Lemma 2: There is an unique point P on line such that .
Proof: First show that P lies between and . Then, use the fact that (a constant) to prove the lemma.
Lemma 1 shows that every point on the plane can be equivalently mapped to a line on . Lemma 2 shows that only one point in this mapping satisfies the given condition. Combining these two lemmas shows that the radical axis is a line, completing part (a).
Parts (b), (c), and (d) will be left to the reader as an exercise.
Now, try to prove Theorem 3 on your own! (Hint: Let P be the intersection of two of the radical axises.)
Exercises
If you haven't already done so, prove the theorems and lemmas outlined in the proofs section. If you have done so, prove them again. (Repetition is the best way to master a new concept.)
Note: No solutions will be provided to the following problems. If you are stuck, ask on the forum.
Problem 1. Two circles P and Q intersect at X and Y. Point A is located on such that AP = 10 and AQ = 15. If the radius of Q is 7, find the radius of P.
Problem 2. Solve 2009 USAMO Problem 1. If you already know how to solve it, write up a real proof on a piece of paper. And do it twice.