Difference between revisions of "1994 AHSME Problems/Problem 2"
(Created page with "==Problem== A large rectangle is partitioned into four rectangles by two segments parallel to its sides. The areas of three of the resulting rectangles are shown. What is the are...") |
(→Solution) |
||
Line 13: | Line 13: | ||
<math> \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 21 \qquad\textbf{(E)}\ 25 </math> | <math> \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 21 \qquad\textbf{(E)}\ 25 </math> | ||
==Solution== | ==Solution== | ||
+ | <asy> | ||
+ | pair A=(0,0),B=(10,0),C=(10,7),D=(0,7),EE=(0,5),F=(10,5),G=(3,0),H=(3,7); | ||
+ | path BG=shift(0,-0.5)*(B--G); | ||
+ | path BF=shift(0.5,0)*(B--F); | ||
+ | path FC=shift(0.5,0)*(F--C); | ||
+ | path DH=shift(0,0.5)*(D--H); | ||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(EE--F); | ||
+ | draw(G--H); | ||
+ | draw(BG,L=Label("$7$",position=MidPoint,align=(0,-1)),arrow=Arrows(),bar=Bars,red); | ||
+ | draw(BF,L=Label("$5$",position=MidPoint,align=(1,0)),arrow=Arrows(),bar=Bars,red); | ||
+ | draw(FC,L=Label("$2$",position=MidPoint,align=(1,0)),arrow=Arrows(),bar=Bars,red); | ||
+ | draw(DH,L=Label("$3$",position=MidPoint,align=(0,1)),arrow=Arrows(),bar=Bars,red); | ||
+ | label("$6$", (1.5,6)); | ||
+ | label("$15$", (1.5,2.5),blue); | ||
+ | label("$14$", (6.5,6)); | ||
+ | label("$35$", (6.5,2.5)); | ||
+ | </asy> | ||
+ | |||
+ | We can easily see the dimensions of each small rectangle. So the area of the last rectangle is <math>3\times 5=\boxed{\textbf{(B) }15}</math>. |
Revision as of 13:35, 28 June 2014
Problem
A large rectangle is partitioned into four rectangles by two segments parallel to its sides. The areas of three of the resulting rectangles are shown. What is the area of the fourth rectangle?
Solution
We can easily see the dimensions of each small rectangle. So the area of the last rectangle is .