Difference between revisions of "1991 AJHSME Problems/Problem 4"

(Created page with '==Problem== If <math>991+993+995+997+999=5000-N</math>, then <math>N=</math> <math>\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{…')
 
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 8: Line 8:
  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
991+993+995+997+999=5000-N &\Rightarrow (1000-9)+(1000-7)+(1000-5)+(1000-3)+(1000-1) = 5000-N \
+
991+993+995+997+999=5000-N \ &\Rightarrow (1000-9)+(1000-7)+(1000-5)+(1000-3)+(1000-1) = 5000-N \
 
&\Rightarrow 5\times 1000-(1+3+5+7+9) = 5000 -N \
 
&\Rightarrow 5\times 1000-(1+3+5+7+9) = 5000 -N \
 
&\Rightarrow 5000-25=5000-N \
 
&\Rightarrow 5000-25=5000-N \
Line 18: Line 18:
 
{{AJHSME box|year=1991|num-b=3|num-a=5}}
 
{{AJHSME box|year=1991|num-b=3|num-a=5}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:53, 8 October 2014

Problem

If $991+993+995+997+999=5000-N$, then $N=$

$\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25$

Solution

\begin{align*} 991+993+995+997+999=5000-N \\ &\Rightarrow (1000-9)+(1000-7)+(1000-5)+(1000-3)+(1000-1) = 5000-N \\ &\Rightarrow 5\times 1000-(1+3+5+7+9) = 5000 -N \\ &\Rightarrow 5000-25=5000-N \\ &\Rightarrow N=25\rightarrow \boxed{\text{E}}.  \end{align*}

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png