Difference between revisions of "2007 AMC 12B Problems/Problem 23"
(→Solution #2) |
(→Solution #2) |
||
Line 51: | Line 51: | ||
<math>(x - 6)(y - 6) = 72</math> | <math>(x - 6)(y - 6) = 72</math> | ||
− | + | We then proceed as the solution above to arrive at <math>6 \Rightarrow (A)</math>. | |
==See Also== | ==See Also== | ||
{{AMC12 box|year=2007|ab=B|num-b=22|num-a=24}} | {{AMC12 box|year=2007|ab=B|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:01, 29 November 2014
Contents
[hide]Problem 23
How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to times their perimeters?
Solution
Let and be the two legs of the triangle.
We have .
Then .
We can complete the square under the root, and we get, .
Let and , we have .
After rearranging, squaring both sides, and simplifying, we have .
Putting back and , and after factoring using , we've got .
Factoring 72, we get 6 pairs of and
And this gives us solutions .
Solution #2
We will proceed by using the fact that , where is the radius of the incircle and is the semiperimeter ().
We are given .
The incircle of breaks the triangle's sides into segments such that , and . Since ABC is a triangle, one of , and is equal to its radius, 6. Let's assume .
The side lengths then become , and . Plugging into Pythagorean's theorem:
We then proceed as the solution above to arrive at .
See Also
2007 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.