Difference between revisions of "2009 AMC 10B Problems/Problem 20"

(Solution)
(Solution)
Line 44: Line 44:
 
BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\
 
BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\
 
BD(\sqrt5+1)=2\
 
BD(\sqrt5+1)=2\
BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2} \Longrightarrow C}.</math>
+
BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2} \Longrightarrow B}.</math>
  
 
== See Also ==
 
== See Also ==

Revision as of 22:51, 17 January 2016

Problem

Triangle $ABC$ has a right angle at $B$, $AB=1$, and $BC=2$. The bisector of $\angle BAC$ meets $\overline{BC}$ at $D$. What is $BD$?

[asy] unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  pair A=(0,1), B=(0,0), C=(2,0); pair D=extension(A,bisectorpoint(B,A,C),B,C); pair[] ds={A,B,C,D};  dot(ds); draw(A--B--C--A--D);  label("$1$",midpoint(A--B),W); label("$B$",B,SW); label("$D$",D,S); label("$C$",C,SE); label("$A$",A,NW); draw(rightanglemark(C,B,A,2)); [/asy]

$\text{(A) } \frac {\sqrt3 - 1}{2} \qquad \text{(B) } \frac {\sqrt5 - 1}{2} \qquad \text{(C) } \frac {\sqrt5 + 1}{2} \qquad \text{(D) } \frac {\sqrt6 + \sqrt2}{2} \qquad \text{(E) } 2\sqrt 3 - 1$

Solution

By the Pythagorean Theorem, $AC=\sqrt5$. Then, from the Angle Bisector Theorem, we have:

$\frac{BD}{1}=\frac{2-BD}{\sqrt5}\\ BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\\ BD(\sqrt5+1)=2\\ BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2} \Longrightarrow B}.$

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png