Difference between revisions of "2006 AMC 10A Problems/Problem 8"

(Solution)
(Solution)
Line 24: Line 24:
  
 
<math>c=11</math>. E is the answer.
 
<math>c=11</math>. E is the answer.
 
--[[User:Someperson01|Someperson01]] 17:35, 15 July 2006 (EDT)
 
  
 
== See Also ==
 
== See Also ==
 
*[[2006 AMC 10A Problems]]
 
*[[2006 AMC 10A Problems]]

Revision as of 16:35, 15 July 2006

Problem

A parabola with equation $\displaystyle y=x^2+bx+c$ passes through the points (2,3) and (4,3). What is $\displaystyle c$?

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11$

Solution

Substitute the points (2,3) and (4,3) into the first equation for (x,y).

Then we get a system of two equations:

$3=4+2b+c$

$3=16+4b+c$

Subtracting the first equation from the second we have:

$0=12+2b$

$b=-6$

Then using $b=-6$ in the first equation:

$0=1+-12+c$

$c=11$. E is the answer.

See Also