Difference between revisions of "2016 AIME I Problems/Problem 6"
(→Solution 2) |
Joey8189681 (talk | contribs) (→Solution) |
||
Line 44: | Line 44: | ||
WLOG assume <math>\triangle ABC</math> is isosceles (with vertex <math>C</math>). Let <math>O</math> be the center of the circumcircle, <math>R</math> the circumradius, and <math>r</math> the inradius. A simple sketch will reveal that <math>\triangle ABC</math> must be obtuse (as an acute triangle will result in <math>LI</math> being greater than <math>DL</math>) and that <math>O</math> and <math>I</math> are collinear. Next, if <math>OI=d</math>, <math>DO+OI=R+d</math> and <math>R+d=DL+LI=5</math>. Euler gives us that <math>d^{2}=R(R-2r)</math>, and in this case, <math>r=LI=2</math>. Thus, <math>d=\sqrt{R^{2}-4R}</math>. Solving for <math>d</math>, we have <math>R+\sqrt{R^{2}-4R}=5</math>, then <math>R^{2}-4R=25-10R+R^{2}</math>, yielding <math>R=\frac{25}{6}</math>. Next, <math>R+d=5</math> so <math>d=\frac{5}{6}</math>. Finally, <math>OC=OI+IC</math> gives us <math>R=d+IC</math>, and <math>IC=\frac{25}{6}-\frac{5}{6}=\frac{10}{3}</math>. Our answer is then <math>\boxed{013}</math>. | WLOG assume <math>\triangle ABC</math> is isosceles (with vertex <math>C</math>). Let <math>O</math> be the center of the circumcircle, <math>R</math> the circumradius, and <math>r</math> the inradius. A simple sketch will reveal that <math>\triangle ABC</math> must be obtuse (as an acute triangle will result in <math>LI</math> being greater than <math>DL</math>) and that <math>O</math> and <math>I</math> are collinear. Next, if <math>OI=d</math>, <math>DO+OI=R+d</math> and <math>R+d=DL+LI=5</math>. Euler gives us that <math>d^{2}=R(R-2r)</math>, and in this case, <math>r=LI=2</math>. Thus, <math>d=\sqrt{R^{2}-4R}</math>. Solving for <math>d</math>, we have <math>R+\sqrt{R^{2}-4R}=5</math>, then <math>R^{2}-4R=25-10R+R^{2}</math>, yielding <math>R=\frac{25}{6}</math>. Next, <math>R+d=5</math> so <math>d=\frac{5}{6}</math>. Finally, <math>OC=OI+IC</math> gives us <math>R=d+IC</math>, and <math>IC=\frac{25}{6}-\frac{5}{6}=\frac{10}{3}</math>. Our answer is then <math>\boxed{013}</math>. | ||
+ | |||
+ | ==Solution 4== | ||
+ | |||
+ | Since <math>\angle{LAD} = \angle{BDC}</math> and <math>\angle{DLA}=\angle{DBC}</math>, <math>\triangle{DLA}\sim\triangle{DBC}</math>. Also, <math>\angle{DAC}=\angle{BLC}</math> and <math>\angle{ACD}=\angle{LCB}</math> so <math>\triangle{DAC}\sim\triangle{BLC}</math>. Now we can call <math>AC</math>, <math>b</math> and <math>BC</math>, <math>a</math>. By angle bisector theorem, <math>\frac{AD}{DB}=\frac{AC}{BC}</math>. So let <math>AD=bk</math> and <math>DB=ak</math> for some value of <math>k</math>. Now call <math>IC=x</math>. By the similar triangles we found earlier, <math>\frac{3}{ak}=\frac{bk}{x+2}</math> and <math>\frac{b}{x+5}=\frac{x+2}{a}</math>. We can simplify this to <math>abk^2=3x+6</math> and <math>ab=(x+5)(x+2)</math>. So we can plug the <math>ab</math> into the first equation and get <math>(x+5)(x+2)k^2=3(x+2) \rightarrow k^2(x+5)=3</math>. We can now draw a line through <math>A</math> and <math>I</math> that intersects <math>BC</math> at <math>E</math>. By mass points, we can assign a mass of <math>a</math> to <math>A</math>, <math>b</math> to <math>B</math>, and <math>a+b</math> to <math>D</math>. We can also assign a mass of <math>(a+b)k</math> to <math>C</math> by angle bisector theorem. So the ratio of <math>\frac{DI}{IC}=\frac{(a+b)k}{a+b}=k=\frac{2}{x}</math>. So since <math>k=\frac{2}{x}</math>, we can plug this back into the original equation to get <math>\left(\frac{2}{x}\right)^2(x+5)=3</math>. This means that <math>\frac{3x^2}{4}-x-5=0</math> which has roots -2 and <math>\frac{10}{3}</math> which means our <math>CI=\frac{10}{3}</math> and our answer is <math>013</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2016|n=I|num-b=5|num-a=7}} | {{AIME box|year=2016|n=I|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:48, 17 March 2016
Contents
[hide]Problem
In let be the center of the inscribed circle, and let the bisector of intersect at . The line through and intersects the circumscribed circle of at the two points and . If and , then , where and are relatively prime positive integers. Find .
Solution
Solution 1
Suppose we label the angles as shown below. As and intercept the same arc, we know that . Similarly, . Also, using , we find . Therefore, . Therefore, , so must be isosceles with . Similarly, . Then , hence . Also, bisects , so by the Angle Bisector Theorem . Thus , and the answer is .
Solution 2
WLOG assume is isosceles. Then, is the midpoint of , and . Draw the perpendicular from to , and let it meet at . Since , is also (they are both inradii). Set as . Then, triangles and are similar, and . Thus, . , so . Thus . Solving for , we have: , or . is positive, so . As a result, and the answer is
Solution 3
WLOG assume is isosceles (with vertex ). Let be the center of the circumcircle, the circumradius, and the inradius. A simple sketch will reveal that must be obtuse (as an acute triangle will result in being greater than ) and that and are collinear. Next, if , and . Euler gives us that , and in this case, . Thus, . Solving for , we have , then , yielding . Next, so . Finally, gives us , and . Our answer is then .
Solution 4
Since and , . Also, and so . Now we can call , and , . By angle bisector theorem, . So let and for some value of . Now call . By the similar triangles we found earlier, and . We can simplify this to and . So we can plug the into the first equation and get . We can now draw a line through and that intersects at . By mass points, we can assign a mass of to , to , and to . We can also assign a mass of to by angle bisector theorem. So the ratio of . So since , we can plug this back into the original equation to get . This means that which has roots -2 and which means our and our answer is .
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.